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A B S T R A C T  
 

 

With the escalating integration of Electronic Control Units (ECUs) in contemporary vehicles, the 

intricacy of vehicle networks is incessantly advancing. Diagnostic communication, as a pivotal facet 
within these networks, grapples with protracted development cycles and heightened intricacies. In a bid 

to augment software reusability and portability, this study meticulously scrutinized pertinent research 

and proffered an electric vehicle fault diagnosis system predicated on the Controller Area Network 
(CAN) bus, leveraging the diagnostic communication architecture advocated by the AUTOSAR 

standard. The integration of AUTOSAR seeks to pioneer an innovative software development paradigm 

for automotive fault diagnosis systems, thereby remedying extant limitations. The communication and 
diagnostic module of this study were instantiated using AUTOSAR, thereby obviating the necessity for 

developers to immerse themselves in hardware intricacies and communication implementations. This 

allows developers to focalize their efforts on crafting software features for fault diagnosis. Empirical 

results illustrate that the single-core CPU utilization rate of the proposed method in this article stands at 

40.68%, with a fault detection time of 0.0217. The success rate of fault detection is 98.70%, indicating 

an increase of 12.97% and 8.98% when compared to the CAN bus and structural analysis methods, 
respectively. Testing indicators are significantly mitigated, yielding more precise fault detection 

outcomes. The exploration of this avant-garde software development methodology in automotive 

electronic products markedly amplifies the efficiency of automotive troubleshooting system software, 
underscoring its potential for academic contribution and application in real-world scenarios. 

doi: 10.5829/ije.2024.37.06c.16 
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1. INTRODUCTION 
 

Approximately 70% of the time spent in the maintenance 

process of traditional cars is devoted to fault 

identification, with the remaining 30% allocated to 

troubleshooting. In comparison to conventional vehicles, 

the electrical system of pure electric vehicles is more 

intricate and electronic in nature. It encompasses several 

subsystems, such as the vehicle, drive motor, battery 

management, high-voltage electrical safety, instrument 

panel control, auxiliary power system, air conditioning, 

power steering, and electronic brakes. Each subsystem 

carries out its functions through its dedicated Electronic 

Control Unit (ECU), and communication between ECUs 

is facilitated through the Controller Area Network (CAN) 

bus network, ensuring the coordinated operation of the 

entire vehicle (1-3). 

Gholami and Sanjari (4) designed a real-time fault 

diagnosis system for pure electric vehicles. This system 

can promptly identify potential faults and implement 

appropriate strategies to ensure the safe and reliable 

operation of vehicles. Bhosale and Mastud (5) developed 

a fault diagnosis system for pure electric vehicles based 

on the CAN bus. They completed the design of a fault 

diagnosis instrument for pure electric vehicles and tested 

the fault diagnosis system with CANoe software. 

Ahmadigorji and Mehrasa (6) used the structural analysis 

method to establish a fault diagnosis system for the power 

system of pure electric vehicles. Jian et al. (7) established 

diagnosis rules and constructed the corresponding fault 

tree based on the study of fault diagnosis technology for 

pure electric vehicles. Subsequently, a set of expert fault 

diagnosis system models was designed using WPF 

software language to enhance fault diagnosis efficiency 

and compensate for the lack of technical expertise among 

after-sales personnel. Ochando et al. (8) developed a pure 

electric vehicle status monitoring and fault diagnosis 

system based on the onboard CAN network. They 

utilized LabVIEW and Kvaser USBcan communication 

card to achieve real-time monitoring of the status and 

fault information of pure electric vehicles during 

operation. Faults were analyzed based on monitored 

status and specific fault phenomena when encountered, 

leading to effective solutions. Wang (9) studied the fault 

diagnosis of the distributed control system of electric 

vehicles based on the CAN bus. This involved 

discussions on fault diagnosis modes, fault monitoring 

and diagnosis methods, and the coding method of fault 

codes (DTC) and fault information for electric vehicles, 

representing a valuable exploration into the in-depth 

study of electric vehicle fault diagnosis based on the 

CAN bus. 

As the integration of Electronic Control Units (ECUs) 

with modern vehicles continues to rise, the complexity of 

the entire vehicle network is increasing. As a critical 

function within the onboard network, the development 

cycle and difficulty of diagnostic communication are 

escalating. To enhance software reuse and portability, 

this paper develops an electric vehicle fault diagnosis 

system based on the CAN bus, incorporating the 

diagnostic communication architecture recommended by 

the AUTOSAR standard through an analysis of relevant 

research. 
 

 

2. INTRODUCTION TO RELATED THEORIES 
 
2. 1. AUTOSAR Architecture           Haur (10) 

endeavored to implement crucial functions within an 

automotive electronic software system, with the 

objective of standardizing functional interfaces. This 

standardization facilitates the seamless integration and 

effective reuse of software modules, thereby enhancing 

the efficiency of software updates and development 

processes. To achieve this, the software architecture is 

structured into three layers: the application layer, the run-

time environment layer, and the base software layer. This 

hierarchical and modular approach aligns with 

contemporary software development and design 

philosophy (11), as illustrated in Figure 1. 

 

2. 1. 1. Application Layer         The application 

architecture of AUTOSAR comprises interconnected 

software components (SWCs) linked through a virtual 

function bus. Each SWC incorporates one or more ports, 

and these SWCs establish connections through these 

ports. Within the SWCs, running entities (REs) represent 

the smallest code fragments, eventually mapped to 

specific operating system (OS) tasks and scheduled by 

the OS to execute corresponding functions (12).  

To facilitate system integration, AUTOSAR 

introduces the Virtual Function Bus (VFB) (13). The 

VFB enables the design of application software without 

direct dependence on the underlying hardware and 

communication mechanisms. SWCs communicate 

through ports, interacting with hardware resources via the 

VFB. This design choice renders the application layer 

software implementation independent of the specific 

hardware, thereby significantly enhancing the portability 

of the application software. 
 

2. 1. 2. RTE Layer          At the core of the AUTOSAR 

architecture lies the Run-time Environment (RTE), 

serving as a tangible realization of the Virtual Function 

Bus (VFB). The RTE plays a pivotal role by mapping 

Running Entities (REs) within all Software Components 

(SWCs) on the local Electronic Control Unit (ECU) to 

tasks in the operating system (OS). It is responsible for 

establishing communication among these REs. In cases 

where REs are mapped to different ECUs, the RTE takes 

on the responsibility of facilitating communication 

between them. 
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Figure 1. AUTOSAR architecture 

 

 

Furthermore, the RTE is instrumental in 

implementing the segregation between application and 

base software. It provides communication services 

between SWCs in the application layer and acts as a 

conduit for communication within single ECU systems or 

across multi-ECU systems (14). The RTE defines 

interfaces for data communication between application 

layer SWCs and the underlying software modules. This 

includes standardizing interfaces for input/output (I/O), 

storage, and other fundamental accesses, thus ensuring 

the application's independence from underlying hardware 

characteristics. 
 
2. 1. 3. Base Software Layer        The base software 

layer serves as a crucial foundation, delivering essential 

services to the application layer's software components. 

These services encompass a spectrum of functionalities, 

including underlying hardware drivers, bus and network 

communication, real-time task scheduling, vehicle 

troubleshooting, and other foundational services. 

Comprising approximately 80 base software modules, 

this layer is organized into the microcontroller 

abstraction layer, ECU abstraction layer, service layer, 

and complex driver layer, following a bottom-up 

hierarchy. 

The microcontroller abstraction layer, ECU 

abstraction layer, service layer, and complex driver layer 

collectively enable applications to access microcontroller 

hardware resources directly. This access is facilitated 

through the complex driver layer, allowing the 

implementation of intricate sensor and controller 

operations, such as fuel injection, ignition control, and 

other specific and complex functions. The complex 

driver layer is particularly valuable for implementing 

hardware resources not supported by AUTOSAR or not 

standardized, while ensuring compliance with real-time 

requirements for specific operations (15). 

 
2. 2. AUTOSAR Diagnostic Functions     The 

diagnostic-related modules within the AUTOSAR 

automotive electronics software architecture are depicted 

in Figure 2. 

The Function Inhibition Manager (FIM) module 

plays a pivotal role in enabling or disabling functional 

entities within the software component based on event 

statuses reported by the Diagnostic Event Manager 

(DEM). The Diagnostic Communication Manager 

(DCM) and DEM serve as core modules responsible for 

implementing the diagnostic functions inherent in 

AUTOSAR. As of the current version, AUTOSAR 

version 3.1 diagnostics encompass a comprehensive suite 

of 9 On-Board Diagnostics (OBD) services. 

 

2. 3. Multi-sensor Information Fusion 
2. 3. 1. Multi-sensor Information Fusion Concept   
Multi-sensor fusion, commonly known as data fusion, 

involves amalgamating pertinent information gathered 

by various environmental sensing sensors installed on an 

innovative electric vehicle. The synthesis of information 

detected by multiple sensors, when combined and 

complemented, addresses the limitations of individual 

sensors under external influences. This collaborative 

approach mitigates the risk of decision errors and 

enhances overall recognition capabilities (16–19). 

The integration of information data and the location 

of fusion delineate three distinct levels from low to high 

abstraction: the data layer (sensor-level data fusion), 

feature layer (central-level data fusion), and decision 

layer (hybrid data fusion). 

(1) Data Layer Fusion 
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Figure 2. AUTOSAR Diagnostic functions 

 

 

At the lowest fusion level, known as data layer fusion, 

raw data is directly transmitted to the fusion center 

without undergoing any preliminary processing or 

analysis. The process of data layer fusion is illustrated in 

Figure 3. 

This fusion level, while minimizing original data 

loss, is characterized by extensive redundant data 

processing, resulting in compromised real-time 

robustness and interference resistance. 

(2) Feature Layer Fusion 

Feature layer fusion involves extracting target 

features, such as boundary, distance, velocity, size, 

orientation, and angle, through simple filtering. 

Subsequently, the collected data undergoes classification 

and analysis to eliminate invalid information before the 

actual data fusion process. The feature layer fusion 

process is depicted in Figure 4. 

This fusion level necessitates preliminary data 

processing, involving the compression of raw data 

information to ensure effective real-time processing. 

However, this approach may introduce the potential loss 

of critical raw data, leading to biases in the fusion results 

(20). 

(3) Decision-Level Integration 

Decision-level fusion entails the amalgamation of 

local decisions made by sensors through a mid-level 
 

 
Figure 3. Data layer fusion process 
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Figure 4. Feature layer fusion process 

 

 

fusion processor. This occurs subsequent to the pre-

processing of collected data for tasks such as 

classification, identification, and decision-making. The 

decision layer fusion process is illustrated in Figure 5. 

Since the fusion process is not directly involved in system 

decision-making, it guarantees flexibility in fusion and 

robust anti-interference capabilities. Even if certain 

sensor functions experience failure, it does not result in 

significant errors in the fusion results. However, the 

trade-off is that the pre-processing of data becomes more 

intricate, thereby increasing the processing difficulty. 

 
2. 3. 2. Methods for Multi-sensor Information 
Fusion           The algorithm for information fusion in 

electric vehicles, leveraging multiple sensors, 

incorporates a range of techniques, including weighted 

average, Kalman filter, Bayesian estimation, D-S 

evidence theory, fuzzy logic inference, and artificial 

neural network (21-23). In this paper, the approach 

employed is the weighted average method. 
Let the target data acquired by multiple sensors be 

denoted as 𝑎1, 𝑎2… , 𝑎𝑛, with variances 𝜎1
2,  𝜎2

2… , 𝜎𝑛
2, t 

and the corresponding weights of each sensor as  

𝑙1, 𝑙2… , 𝑙𝑛. After fusion, the resulting state data is: 

�̃� = 𝑙1𝑎1 + 𝑙2𝑎2 +⋯+ 𝑙𝑛𝑎𝑛 = ∑

𝑖=1
𝑛

𝑙𝑖𝑎𝑖  
(1) 

 
Figure 5. Decision-level integration process 

 

 

The weighting conditions are defined as follows: 

∑

𝑖=1
𝑛

𝑙𝑖 = 1  
(2) 

If each sensor weight is equally distributed, with 

equal weights denoted as 𝑙 =
1

𝑛
, then the fused data can 

be expressed as: 

�̃� = ∑

𝑖=1
𝑛

𝑙𝑖𝑎𝑖 =
1

𝑛
∑

𝑖=1
𝑛

𝑎𝑖  
(3) 

The total variance after fusion is given by: 

𝜎2 = 𝐸[(𝑎 − �̃�)2] = 𝐸 [ ∑

𝑖=1
𝑛

𝑙𝑖(𝑎 − 𝑎𝑖)]

2

  (4) 

𝐸[(𝑎 − 𝑎𝑖)(𝑎 − 𝑎𝑗)] = 0(𝑖, 𝑗 = 1,2,3, … , 𝑛, 𝑖 ≠ 𝑗)  (5) 

The total variance of the weighted average fusion 

algorithm is calculated as follows: 

𝜎2 =
∑

𝑖=1
𝑛
𝜎𝑖
2

𝑛2   
(6) 

 
 

3. DESIGN AND IMPLEMENTATION OF 
COMMUNICATION DIAGNOSIS MODULE 
 
3. 1. Design for Information Fusion        Information 

fusion technology integrates processed multi-sensor 
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information to delineate specific characteristics of the 

external environment or the object under observation. In 

modern society, sensors play a fundamental role, serving 

as essential tools for monitoring the surrounding 

environment. They provide a tangible representation of 

the world to human perception and contribute 

significantly to technological progress. As depicted in 

Figure 6, the information fusion process in this paper 

unfolds in four distinct steps: 

(1) Acquisition of Experimental Data: Data is 

collected in various scenarios, and the raw sensor data 

obtained is segmented into samples and labeled. These 

data serve as the foundation for the information fusion 

process. 

(2) Extraction of Features: Feature extraction is 

conducted separately on the data, yielding features that 

constitute the feature layer for information fusion. 

(3) Training the Respective Recognition Models: The 

features from the feature layer undergo training using 

various machine learning algorithms, resulting in the 

creation of recognition models and their respective 

decision results. 

(4) Decision Layer Fusion: The decision results 

obtained in the third step are amalgamated using a 

designed fusion method, ultimately yielding the final 

recognition result. 

 

3. 2. Design of AUTOSAR Communication Module   
The design and implementation flow of the AUTOSAR 

communication module is depicted in Figure 7. 

Firstly, through a comprehensive study of the 

AUTOSAR communication module standard, the entire 

file structure of the communication module is designed 

to capture the overarching design process from a macro 

perspective. 

Secondly, the module undergoes configuration based 

on the AUTOSAR methodology. The configuration set is 

acquired by visually representing the module 

configuration using the self-developed ECU 

configuration tool, ReDe (24, 25). 

Next, the data structure and standard function 

interfaces of the communication driver and interface 

layers are implemented in accordance with the 

specification. 

 

 

 
Figure 6. Information Fusion 
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Figure 7. Design of AUTOSAR communication module 

 

 

Finally, the complete AUTOSAR communication 

module is implemented in conjunction with the hardware 

ECU characteristics. To ensure the reliability and 

reusability of the module, thorough testing and analysis 

are conducted post-implementation to identify and rectify 

any errors that may have occurred throughout the entire 

design and implementation process. 

3. 2. 1. AUTOSAR Communication Module File 
Structure         Given the extensive and intricate nature 

of the AUTOSAR software architecture, we illustrate the 

communication system using the CAN bus as an 

exemplary case. The CAN bus stands out as a highly 

prevalent Fieldbus in the automotive domain and is 

widely adopted in current vehicle communication 

systems. Notably, it serves as the primary Fieldbus for 

European and American models, which constitute a 

substantial portion of the vehicle fleet in China. As a 

result, the CAN bus is ubiquitously employed in virtually 

all bus technology-equipped models in China (26, 27). In 

Figure 8, the file structure is presented, meticulously 

designed in accordance with the AUTOSAR 

communication specification. 

 

3. 2. 2. Communication Module File Structure          
The communication driver layer provides a 'Can.h' 

header file encompassing the definitions of the CAN 

module API, incorporating variables, global data, and 

types meant exclusively for internal use by the CAN 

driver. Simultaneously, the CAN layer furnishes 

'Can_Cfg.h' to house configuration parameter 

information necessary during the pre-compilation phase. 

The specific services are then implemented in 'Can.c' 

(28). 

Concurrently, the communication interface layer 

contributes the 'CanIf.h' header file, featuring external 

variables, global parameters, and services outlined in the 

specification. These elements are declared in 'CanIf.c' 

and are restricted to internal usage within the CanIf layer. 

'Can_GeneralTypes.h' defines the general data structures 

 

 

 
Figure 8. File structure designed for AUTOSAR communication specifications 

 



 

 

of the Can driver layer, utilized by the CanIf layer (29, 

30). Additionally, 'ComStack_Types.h' encapsulates the 

definitions of communication-related types, while 

'std_Types.h' contains standard type definitions for 

AUTOSAR. 

Upon the incorporation of a communication service 

module, the headers of each service are added to both the 

driver and interface layers. The file structure of the 

communication module is visually represented in Figure 

9.  

The data sending and receiving process is illustrated 

in Figure 10. During the transmission, the interface layer 

assumes the responsibility of assembling data from the 

upper layers into CAN protocol layer data units, adhering 

to the CAN specification format. It then invokes 

'CanIf_Transmit()' and transfers this data frame to the 

driver layer. Subsequently, the driver layer employs 

'Can_Write()' to initiate the transfer request from the 

controller. In cases where no hardware object is 

available, the request is buffered and transmitted once the 

hardware becomes available. Upon successful 

transmission, a transmission success confirmation is 

dispatched to the upper layer module as a callback 

function, signifying a successful transmission action 

when received by the sender. 

On the reception end, the driver layer reads data from 

the bus through polling or interrupt mechanisms. 

Following data regularization, it invokes 

'CanIf_RxIndication()' to signal the arrival of the data to 

the interface layer. The interface layer, upon receiving 

the CAN data frame from the driver layer, validates and 

filters the Data Length Code (DLC). After extracting 

pertinent information, the interface layer communicates 

the reception event to the corresponding module in the 

upper communication service layer via 

'user_RxIndication()'. If an error is detected during 

reception, the corresponding processing function is 

invoked. Additionally, the indication of the data arrival 

to the upper layer is halted. 
 

3. 3. Design of AUTOSAR diagnostic module    The 

Diagnostic Event Manager (DEM) module, in 

collaboration with the Software Component (SWC), 

undertakes the diagnosis of an event within the 

AUTOSAR system. Upon a change in the event status, 

the DEM is responsible for notifying the relevant SWC 

indicator module and various software modules. This 

notification allows for the display or handling of the 

detected fault. Additionally, the DEM enables other 

modules to query and modify the event's status at any 

given time. 

Within the DEM, a counter records the judgment 

result, with a minimum value of -128 and a maximum 

value of 127. Upon receiving a message marked as 

'PREPASSED,' the counter is decremented by one step. 

When the counter reaches a predefined threshold value, 

the event is deemed to be a fault. Following the diagnosis 

of a fault, the DEM generates a Diagnostic Trouble Code 

(DTC) based on the collected information and relevant 

criteria. This DTC provides valuable information about 

the detected fault. 

The AUTOSAR diagnostic process is visually 

represented in Figure 11. 

After diagnosing a fault, the Diagnostic Event 

Manager (DEM) calls the relevant Non-Volatile Random 

Access Memory (NVRAM) interface to store data. 

Events may involve storing various data types, broadly 

categorized as FreezeFrame and Extended Data Record. 

 

 

 
Figure 9. Can driver and interface layer configuration 
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Figure 10. Flow chart for sending and receiving data 

 

 

 
Figure 11. ASW for Electric Vehicle Diagnostic System 

 

 

FreezeFrame captures information about the 

environment and data at the time of the fault, while 

Extended Data Record includes information from 

software modules, such as frequency clock data. Due to 

the possibility of multiple data collection instances, there 

can be more than one FreezeFrame for a single event. The 

continuity of time-related data may be influenced by 

different sources and storage times. 

In the diagnostic service processing, the Diagnostic 

Communication Manager (DCM) module follows a 

defined flow illustrated in Figure 12. Three sub-modules, 

namely DSL, DSD, and DSP, are developed within the 

DCM module to meet specific requirements. DSL 

interacts directly with the Protocol Data Unit Router 

(PduR), facilitating the reception and transmission of 

service response messages to fulfill service requests. 
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Upon receiving a DiagnosticsessionControl (0x10) 

service, DSL switches the diagnostic session mode, 

providing timing parameters such as the time interval for 

the requesting party to receive the service response 

message (P2CAN_Client). This interval sets the timeout 

mechanism of the application layer in the current session 

mode. When receiving a SecurityAccess (0x27) service, 

DSL returns the seed, verifies the received key, and 

decides whether to grant security access. DSL resets the 

session timeout timer, maintaining the current session 

mode without forwarding the service to the Diagnostic 

Service Dispatcher (DSD) for further processing. 

DSD, the second module, verifies the validity of the 

service request message, checking supported services, 

session modes, security rights, and ECU status. If the 

message is valid, DSD routes the request to the 

Diagnostic Service Processor (DSP) module for 

execution. DSP, the third module, executes the precise 

service request operation. For tasks like reading or 

clearing fault information, DSP accesses the DEM 

module. For data upload/download or reading data 

streams, DSP accesses the memory stack. For input and 

output control requests, DSP uses 

DCM_Send/ReceiveSignal() to interact with the Runtime 

Environment (RTE) and access the Software Component 

(SWC). 

 

 
4. TROUBLESHOOTING TESTS 
 

To validate the accuracy of the fault determination in the 

diagnostic system and assess the system's configurability, 

this paper conducts tests on several commonly used 

services, as outlined in Table 1. 

The Diagnostic Trouble Code (DTC) serves as an 

identification code presented when a fault occurs or is 

detected in an Electronic Control Unit (ECU). The fault 

information corresponding to the DTC can be retrieved 

by referencing a lookup table. A DTC comprises two 

parts: DTC Category and Failure Type. The DTC 
 

 

 

 
Figure 12. DCM flow chart 

 

 

TABLE 1. Diagnostic Services 

Service ID Service name 

0X10 Diagnostic session control 

0x27 Secure access control 

0x22 Read data according to the data identifier 

0x2E Write data according to the data identifier 

0x19 Read DTC according to the status mask 

0x14 Clear DTC 

Category can be further categorized into four 

subsystems: Powertrain, Body, Chassis, and Network. 

For our testing purposes, two DTCs, 0x00599A and 

0x00559C, are configured with DID 0x2345, parameters 

P2 set to 50 ms, and P2* set to 5 s. CAN messages are 

transmitted and parsed following the ISO15765-2 and 

ISO11898-1 protocol specifications. 

We conduct tests on the three sub-services of the 0x10 

service using the diagnostic control tool in CANoe, and 

the results of these tests are summarized in Table 2. 
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TABLE 2. Diagnostic session-related service tests 

Service ID S/R Data Result 

10 01 

Send 
02 10 01 00 00 00 

00 00 Default session 

switching 

through Receive 
06 50 01 00 32 01 

F4 00 

10 02 

Send 
02 10 02 00 00 00 

00 00 Refresh session 

switch passed 
Receive 

06 50 02 00 32 01 

F4 00 

10 03 

Send 
02 10 03 00 00 00 

00 00 

Extended 

session 
switching 

through Receive 
06 50 0300 32 01 

F4 00 

 

 

Based on the preceding test results, all three sub-

service switches of the Diagnostic Session Control 0x10 

service were successfully executed, with the 

corresponding parameters returned. Subsequently, 

service tests related to diagnostic fault codes (DTC) are 

detailed in Table 3. 

From the aforementioned tests, the Read DTC (0x19 

02) and Clear DTC (0x14) tests were successfully 

executed based on the status mask, while the Report DTC 

Number (0x19 01) test, also based on the status mask, did 

not pass. The configuration for the 0x19 01 service was 

not in place during the setup, and it appropriately 

returned a Negative Response Code (NRC) of 0x12, 

indicating that the sub-service is not supported—a 

correct result. 

Service tests related to reading and writing data based 

on Data Identifiers (DID) are elaborated in Table 4. 

Building on the preceding test outcomes, the Read 

and Write Data by Data Identifier (0x22 and 0x2E) 
 

 

TABLE 3. DTC-related service testing 

Service ID S/R Data Result 

19 02 

Send 
03 19 02 2F 00 

00 00 00 

Read the DTC 

according to the 
status mask and 

pass the test 

Receive 
10 0B 59 02 FF 

00 59 9A 

Send 
30 00 14 00 00 

00 00 00 

Receive 
21 2F 00 59 9C 

2F 00 00 

14 

Send 
04 14 FF FF FF  

00 00 00 Clear DTC, 

service test 

passed Receive 
01 54 00 00 00 

00 00 00 

19 01 

Send 
03 19 01 7F 00 

00 00 00 
Service failed 

Receive 
03 7F 19 12 00 

00 00 00 

TABLE 4. DID-related service testing 

Service ID S/R Data Result 

22 

Send 
03 22 23 45 

00 00 00 00 Read DID value 

successfully 
Receive 

04 62 23 45 

55 00 00 00 

2E 

Send 
04 2E 23 45 

EB 00 00 00 The value of DID 
was modified 

successfully Receive 
03 6E 23 45 

00 00 00 00 

22 

Send 
03 22 23 45 

00 00 00 00 Successfully read 

and re-write the 

DID value Receive 
04 62 23 45 

EB 00 00 00 

22 

Send 
03 22 23 44 

00 00 00 00 Failure to read a 

value that does not 

support DID Receive 
03 7F 22 31 

00 00 00 00 

 

 

service passed successfully. However, when attempting 

to read an unassigned Data Identifier (DID), the service 

appropriately returned a Negative Response Code (NRC) 

of 0x31. 

To enhance security, the Vehicle Security Bridge 

(VSB) was reconfigured to establish the security access 

level and session for the DTC reading service. This 

adjustment ensures correct reading and clearing of DTCs 

if the security access level and session credentials are 

successfully authenticated. 
 

 

TABLE 5. Security access-related testing 

Service ID S/R Data Result 

10 03 

Send 
02 10 03 00 00 00 

00 00 Extended 
Session 

Switching Receive 
50 03 00 32 01 F4 

00 00 

27 01 

Send 
02 27 01 00 00 00 

00 00 Request seeds 

and return them 

successfully Receive 
67 01 12 34 00 00 

00 00 

27 02 

Send 
04 27 02 12 39 00 

00 00 
Successfully 

send the key and 

successfully 

match the key Receive 
07 02 00 00 00 00 

00 00 

19 02 

Send 
03 19 02 2F 00 00 

00 00 

Read DTC 

according to the 
status mask; the 

test passes 

Receive 
10 0B 59 02 FF 00 

59 9A 

Send 
30 00 14 00 00 00 

00 00 

Receive 
21 2F 00 59 9C 2F 

00 00 
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14 

Send 
04 14 FF FF FF 00 

00 00 Clear DTC, the 

test passes 
Receive 

01 54 00 00 00 00 

00 00 

10 01 

Send 
02 10 01 00 00 00 

00 00 Default session 

switching is done 
Receive 

06 50 01 00 32 01 

F4 00 

19 02 

Send 
03 19 02 2F 00 00 

00 00 Security level 

not passed, 

cannot read DTC Receive 
30 7F 19 33 00 00 

00 00 

 

 

The results presented in Table 5 demonstrate the 

successful reading of Diagnostic Trouble Codes (DTC) 

when the session and security levels are validated. 

Conversely, in cases of session and security level failure, 

the service appropriately returned a Negative Response 

Code (NRC) of 0x33, indicating failed security 

verification. 

To further substantiate the superiority of the proposed 

method, a comparative analysis of fault detection time 

and fault detection rates was conducted among three 

different methods. The experimental comparison results 

are detailed in Table 6. 

The results depicted in Table 6 unequivocally 

showcase the superiority of our proposed method over 

the other two methods (5, 6), particularly in terms of fault 

detection rate and detection time. 
 

 

TABLE 6. Comparison of Fault Detection Rate 

Solution 
Single core CPU 

occupancy rate 

Fault 

detection 

success rate 

Fault 

detection 

time 

CAN bus [5] 74.94% 85.73% 0.0319 

Structural analysis 

method [6] 
68.53% 89.72% 0.0247 

Our 40.68% 98.70% 0.0217 

 
 
5. CONCLUSION 
 

Building upon the existing electric vehicle fault diagnosis 

system, this paper delineates the design and 

implementation of an electric vehicle fault detection 

system adhering to the AutoSAR standard. The design 

encompasses diagnostic communication and function 

modules based on the diagnostic protocol, and 

comprehensive testing has been conducted. The proposed 

method showcases remarkable attributes, boasting a 

single-core CPU utilization rate of merely 40.68%, a fault 

detection time as low as 0.0217 seconds, and an 

impressive fault detection success rate of 98.70%. In 

direct comparison with the CAN bus and structural 

analysis methods, our proposed method outperforms, 

exhibiting a 12.97% and 8.98% improvement in fault 

detection success rates, respectively. Notably, this 

achievement is accompanied by more efficient test 

indices, resulting in heightened accuracy in fault 

detection results. 
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Persian Abstract 

 چکیده 
دی در  در وسایل نقلیه مدرن، پیچیدگی شبکه های وسایل نقلیه نیز به طور مداوم در حال افزایش است. ارتباطات تشخیصی، به عنوان یک عملکرد کلی  ECUبا افزایش ادغام  

حمل بودن نرم افزار، این مطالعه  شبکه های وسایل نقلیه، با چرخه های توسعه طولانی تر و دشواری های بالاتری مواجه است. به منظور بهبود قابلیت استفاده مجدد و قابل  

با استفاده از معماری ارتباط تشخیصی توصیه شده توسط   CANتحقیقات مربوطه را تجزیه و تحلیل کرد و یک سیستم تشخیص عیب خودروی الکتریکی را بر اساس گذرگاه  

فزار جدید برای سیستم های تشخیص عیب خودرو برای رفع این  ، هدف ما بررسی یک روش توسعه نرم اAUTOSARپیشنهاد کرد. با اتخاذ    AUTOSARاستاندارد  

سازی  افزار و پیادهدهندگان برای بررسی پیچیدگی سخت سازی شد و نیازی به توسعهپیاده  AUTOSARمحدودیت بود. ماژول ارتباطی و تشخیصی این مطالعه با استفاده از  

ان می دهد که نرخ استفاده از  ارتباطات را از بین برد. توسعه دهندگان اکنون می توانند روی طراحی ویژگی های نرم افزار برای تشخیص عیب تمرکز کنند. نتایج تجربی نش

CPU    12.97درصد است که به ترتیب    98.70است. میزان موفقیت تشخیص عیب    0.0217است. زمان تشخیص خطا    ٪40.68تک هسته ای روش پیشنهادی در مقاله تنها 

است. شاخص های تست به طور موثر کاهش می یابد، و نتایج تشخیص خطا دقیق تر است. بررسی این    CANیشتر از روش تحلیل سازه و گذرگاه  درصد ب  8.98درصد و  

 روش جدید توسعه نرم افزار در محصولات الکترونیکی خودرو، کارایی نرم افزار سیستم عیب یابی خودرو را تا حد زیادی بهبود می بخشد. 

 


