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A B S T R A C T  
 

 

Composable life under the extensive global warming of the Earth encourages the progress of renewable 

energy devices and the adoption of new technologies, such as artificial intelligence. Regarding 
enormous potential of wave energy and its consistency, wave energy converter (WEC) plays vital role 

in uniform energy harvesting field. In this paper, the significant environmental changes in the ocean 

prompt us to propose an intelligent feedback control system to mitigate the impact of disturbances and 
variable wind effects on the efficacy of WECs. Deep reinforcement learning (DRL), as a powerful 

machine intelligence technique, is capable of identifying WECs as black-box models. Therefore, based 

on the DRL model, the disturbance and unmeasured state variables are simultaneously estimated in the 
extended state observer section. Leakage in identification data and real-time application requirements 

of limited number of layers in the deep neural networks are compensated by implementation of 

immersion and invariance-based extended state observer which improves coping with the unwanted 
exogenous noises as well. In the overall intelligent control system, the estimated parameters are 

inputted into the DRL as the actor-critic networks. The initial actor network is responsible for 

predicting the control action, while the subsequent critic network determines the decision criterion for 
evaluating the accuracy of the actor's estimated amount. Next, the output value of the critic stage is 

backpropagated through the layers to update the network weights. The simulation test results in 

MATLAB indicate the convergence of unmeasured parameters/states to the corresponding true values 
and the significance of newly designed intelligent DRL method. 

doi: 10.5829/ije.2024.37.06c.05 
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NOMENCLATURE 

WEC Wave energy converter ESO Extended state observer 

DRL Deep reinforcement learning RSO reduced state observer 

BEM Boundary element method ms mass of the buoy(kg) 

MPC Model predictive control 𝑧𝑤 water level(m) 

DOF Degree of freedom f
s
 lateral restoring force(N) 

ADRC Adaptive disturbance rejection control ρ water’s density(kg/m3) 

g gravity acceleration(m/s2) f
r
 radiation force(N) 

A cross-section of the float(m2) m∞ extra mass(kg) 

𝑧𝑣 heave motion of the float(m) hr core of the radiation force 

w unknown disturbance PTO power take-off 

 
 
1. INTRODUCTION 
 

Global warming, a major consequence of the increasing 

use of fossil fuels, has led to a growing tendency among 

people to seek benefits from renewable energy sources. 

Accordingly, offshore energy converter devices such as 

wind turbines and WECs are developed to generate 

consistent energy for everyday needs. In this paper, we 

propose an artificial intelligence algorithm in the form 

of a closed-loop control system for the WEC plant to 

mitigate obstacles to achieving uniform clean energy 

production. As a means of reducing test platform costs, 

it is recommended to employ dynamic modeling of the 

WEC and simulate it along with the proposed control 

algorithms. The boundary element method (BEM) 

employs a linear potential theory, assuming small 

displacements of the structure relative to the wavelength 

in the presence of non-rotational flows. Hence, the 

performance of BEM solutions in stormy seas is 

restricted (1). The theoretical maximum energy has been 

determined to be roughly 3.1013 kWh/year, which is 

equivalent to almost 20% of the total-energy 

consumption in 2019. But the usable resource is roughly 

ten times smaller due to technical and budgetary 

restrictions. WECs convert wave energy into electrical 

current. While there have been efforts to generalize 

wave power as a regularly used source since 1890, it is 

not currently being widely utilized. Around 16 MW of 

operational wave power were globally generated in 

2020, which is approximately five times less than about 

2 TW, required to fully reach of the world's wave 

energy potential. One important aspect is the production 

costs per kWh, which in 2020 were approximately 10 

times higher than those of offshore wind projects. 

In the last three decades, various ways for 

conversion of wave power have been created, resulting 

in hundreds of patents in recent years. Diversity of wave 

energy ideas are now being explored by industry and 

academic research organizations all across the globe. 

Despite the fact that various operational designs have 

been built and validated, only a few concepts have 

incorporated modeling and wave tank testing into the 

sea. 

Wave energy is still a crucial source of clean and 

renewable energy, even though it won't likely ever 

correspond with the global power output of wind and 

solar energy. Wave energy has the ability to deliver the 

electricity in hard-to-reach locations like coastal 

communities and remote islands that today depend on 

expensive, carbon-intensive diesel imports as it is more 

predictable and stable than solar / wind energy. Also, 

military tasks that need access to deeper seas, offshore 

fishing, and marine research may all be powered by 

wave energy devices. Waves in the US provide nearly 

80% of the energy required by the country. The industry 

may access part of that energy, albeit not all of it, to 

make it simpler for the country to move to 100% clean 

energy. WECs, also known as point absorbers, are 

buoy-style devices that collect wave energy from all 

directions. They are positioned at or near the surface of 

the ocean. Wave energy is captured by a vertically 

submerged buoy and then converted into power by a 

piston or linear generatorAmong numerous research 

studies in the field of control for WECs, Nielsen et al. 

proposed a model predictive control (MPC) approach to 

demonstrate its superiority in terms of collecting up to 

25% more energy compared to conventional reactive 

controllers. These reactive controllers take into account 

the power losses during the conversion from mechanical 

to electrical energy (2). Also, the authors showed the 

hydrodynamic and economic performance of an 

oscillating wave surge energy converter is significantly 

influenced by the installation depth and height of the 

incident wave (3). In (4), the authors introduced a novel 

configuration for a linear permanent magnet Vernier 

machine, specifically tailored for harnessing wave 

energy and enhancing the operational efficiency of the 

existing Vernier machine prototype. Bayani et al. 

presented an overview of an offshore point-absorber 

WEC developed by the Hydrodynamics, Acoustics and 

Marine Propulsion Group at Babol Noshirvani 

University of Technology (5). Alizadeh Kharkeshi et al. 

assessed the effectiveness of dimensionless coefficients 

in multi-reservoirs within a hydrodynamic oscillating 

column converter for sea water waves. The experiment, 

which took place in Mazandaran, involved extracting  
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parameters that influence the system's behavior in order 

to conduct a hydrodynamic analysis of the oscillating 

water column (6). Son and Yeung conducted 

experimental tests to validate the nonlinear MPC using 

a solid-state electrical relay with pulse-width 

modulation to simulate analog current flow (7). Korde 

explored the sub-optimal time-domain responsive 

control of WECs and contrasted the increased reactive 

energy consumption for the submerged buoy (8). 

Anderlini et al. gave the wave altitude, wave energy 

span, and the power take-off damping as an input data 

to the artificial neural network to assess the lack of 

confidence in linear model (9). Latching control for 

heave motion of wave converter was developed to 

extremize the motion's measurement irrespective of the 

wave's frequency (10). Wu et al. devised the 

simultaneous latching control for the single Duck WEC 

in unbalanced waves to increase the act of structure in 

sea conditions distant from the normal frequency (11). 

Using MPC, Faedo et al. examined several methods of 

implementing a latching control system in the context of 

WEC (12). Upper limit value for wave excitation force 

was determined using Kalman filter to monitor energy 

absorption with 90% of the ideal constrained optimal 

collected energy (13). Using limited MPC, O'Sullivan 

and Lightbody produced the large quantity of absorbed 

electrical power from the point absorber WEC working 

in heave mode independently, linked to a linear 

permanent magnet generator (14). Also, Li et al. 

developed the multilayer perceptron using the deep 

neural network's techniques to anticipate the temporary 

wave forces and transferred the output of network via 

MPC strategy to conduct online latching control action 

to a point absorber WEC (15). For maximum power 

extraction, a robust MPC using Laguerre polynomials 

was developed to alleviate the computational burden 

(16). A heave-pitch-surge 3-DOF WEC, with the pitch-

surge optimization separated from heave, increased the 

gathered energy by more than three times compared to 

the captured energy from the lurch-only WEC (17). 

Investigation of blocked optimum control on a small 

asymmetrical float indicated that, despite the 

improvement in power capture achievable with the 

current control, the actuation forces are significant (18). 

Moreover, Burgaç and Yavuz implemented the discrete 

Fourier transform technique to estimate the dominant 

wave frequency in the fuzzy controller for defining the 

power take-off control settings (19). Zhan et al. (20) 

proposed a categorized adaptive optimum control 

framework for WECs to enhance energy conversion 

efficiency and reduce the modeling effort required for 

control design . 

The newly built controller in this study was not 

adequately evaluated in the field of WEC and requires 

further investigation. The following summarizes the 

most crucial related works to our newly proposed  

 

controller. In (21), Han J introduced an active 

disturbance rejection control that combines an error-

driven control rule, state observer feature, and the power 

of a nonlinear controller. Zhejiang Gao proved that by 

unifying the controller and addressing the issue of 

disturbance rejection, the performance of traditional 

controllers when faced with disturbances is improved. 

The proposal of the paper was to improve the developed 

controller for the official model, with the aim of 

rejecting disturbances in the plant model (22). Zhao and 

Guo introduced the novel ADRC, which has the 

capacity to track reference signals, reject disturbances, 

and maintain closed-loop stability for a group of single-

input single-output systems (23). Also, Feng and Guo 

have researched the output feedback stability for 

indefinite structures described by partial differential 

equations (24). Hosseini and Keighobadi developed an 

extended state observer-based robust active control to 

approximate both the speed and perturbation trajectories 

of the gyro's dynamics using the location signs (25). In 

(26), Guo and Zhao sought to demonstrate the stability 

issue of an extended state observer by utilizing the error 

equation. They aimed to decrease the influence of the 

disturbance by implementing a high-gain approach. Li 

et al. (27) presented the necessary conditions for the 

convergence of the quantized nonlinear extensible state 

observer using linear matrix inequality. Zhao and Guo 

developed a temporally varying gain ESO to reduce the 

peaking effect near the main time caused by the 

constant high gain technique (28). 

In this research work, to obtain a nearly compatible 

model with real plant, the development of the overall 

dynamics of a WEC with detailed consideration of 

acting forces on the structure is explained. Next, the 

paper proposes a new estimation technique for the 

disturbance and unmeasured parameters of WEC, 

specifically the immersion and invariance-based 

extended state observer. Through mapping of 

considered observer manifold, the unmeasured variables 

are estimated and are fed as input to the intelligent 

controller presumed DRL, which consists of two 

networks named actor-critic. The output of the actor 

network is the input of the main plant. The Q_value, 

which represents the output of the critic network, is 

used to update the weights and biases of the networks 

using the backpropagation method. To prove the 

convergence of the control system, the direct stability 

method of the Lyapunov is assessed. The results of the 

controller are evaluated for the reduced  state observer 

(RSO) as well. The RSO focuses on estimating 

unmeasured states and accounting for exogenous inputs. 

The simulation is conducted to design a linear observer 

for these unmeasured variables. The wide range 

simulation results are assessed with the noisy data to 

guarantee the strength and robustness of the suggested 

controller.  
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2. MATERIAL AND METHODS 
 

In this paper, the software simulation of WEC is 

conducted using the point absorber model to 

demonstrate the effectiveness of the proposed control 

system. To achieve this, we assume the nominal second-

order model of the WEC, considering all acting forces, 

in order to obtain an accurate model. The model 

contains an immersed object with a cylinder on the 

surface of the sea. Wave energy is gathered through the 

use of a power take-off system.  

2. 1. State Space Model of WEC              The state 

space calculations of the proposed system include 

forces, where 𝒛𝒘 represents the water level and 𝒛𝒗 

represents the heave movement of the middle point of 

the float. The power generated by the generator is 

proportional to the force 𝒇𝒖 applied to the piston. 

Therefore, the obtained power will be equal to 𝑷 =
𝒇𝒖𝒗, with the value of 𝒗 = �̇�𝒗. By applying Newton's 

second law, the dynamics of the system can be 

determined: 

s v s r e um f fz f f= − − + +  (1) 

where 𝑚𝑠 represents the mass of the buoy. The 

following describes the definition of the forces present 

in Equation 1. 

𝑓𝑠 is the lateral restoring force.  

s vf gAz=  (2) 

In the given equation, 𝜌 stands for the density of 

water, 𝑔 represents the acceleration due to gravity, 𝐴 

shows the cross-section of the float, and 𝑧𝑣 is the heave 

motion of the float. 

The radiation force 𝑓𝑟 is obtained as follows.  

( ) ( )r v r vf m z h z t d





  
−

= + −  (3) 

where 𝑚∞ indicates the additional mass and ℎ𝑟 

represents the core of the radiation force. Using a finite-

dimensional state-space model, the convolutional term 

in the force value is estimated as follows. 

( ) ( )

r r r r r

t

r r r r v

x A x B z

f C x h z t d


  
−

= +

=  −
 (4) 

Now, considering the equivalent state-space 

representation 𝐷𝑟~(𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 0) leads to the 𝑓𝑟 ≈
𝐷𝑟(𝑠)�̇�𝑣. 

Exterior perturbation force acting on the float is 

determined as 𝑓𝑒 = 𝐷𝑒(𝑠)𝑧𝑤, where 𝐷𝑒  is the equivalent 

representation of the following realization: 

( ) ( )

e e e e w

t

e e e e w

x A x B z

f C x h z t d


  
−

= +

=  −
 (5) 

By applying the force amounts, the state-space 

model of WEC is derived. 

c uc wc

z

x A x B u B w

z C x

= + +

=
 (6) 

where 𝑤 = 𝑧𝑤 , 𝑧 = 𝑧𝑣. 𝑦 = �̇�𝑣, 𝑥 = [𝑧𝑣 , �̇�𝑣]
𝑇 and  

( ) ( )  
010 0

  ,  ,  ,  1  01c wc uc zs r r e e
A B B Ck D D

mm m m

 

    
    = = = =
    − −
        

 
(7) 

The value of 𝑚 is  𝑚𝑎 + 𝑚∞. Additionally, the 

dynamics of the radiation and excitation forces include 

structure uncertainties, represented by 𝛿𝑟 and 𝛿𝑒, 

respectively. The state space form of a dynamic model 

is commonly referred to as: 

1 2

2 1 2

1s er

x x

k DD
x x u x w

m m m m

=

= − + − +
 (8) 

Therefore, we will estimate the amount of 𝑥2 as 

unmeasured output and the quantity of 𝑤 as an 

unknown disturbance value. The viscosity force, 

assuming the negligible velocity of WEC compared to 

the wave velocity, only includes constant terms that 

refer to 𝐷𝑒(𝛿𝑒) as an uncertainty term. The 

characteristics of the sea required for the training of 

DRL were discussed in Section 3. Moreover, Table 1 

includes a detailed table about this process and some 

training data. 

 
2. 2. Implementation of the Control System         
Suppose an n-dimensional lower-triangular nonlinear 

system with definition as follows (25). 

( ) ( ) ( ) ( ) ( )( )1 1 ,   , , ,    1 : 1,i i i it t f t t u t i n   += +  = −  (9) 

where, 𝜉𝑖 ∈ ℝ denotes the state variables belonging to a 

compact set Ω, 𝑢 ∈ 𝐶1(ℝ≥0, ℝ) shows the input with an 

upper bound namely 𝑢0, 𝑤 ∈ 𝐶1(ℝ≥0, ℝ) demonstrates 

the unknown disturbance with an upper bound of 𝑤1, 

𝑓𝑖 ∈ 𝐶0(ℝ𝑖+1, ℝ) are defining parts of the system that 

are locally Lipschitz, and 𝑔 ∈ 𝐶0(ℝ𝑛+1, ℝ) stands for 

the uncertainty section. 

 

 

TABLE 1. Target sea characteristic data 

Wave height  Wave period  Wavelength  

0.024 0.870 1.186 

0.030 1.008 1.581 

0.036 1.178 2.109 

0.032 1.217 2.231 

0.030 1.260 2.367 

0.022 1.385 2.761 

0.018 1.510 3.152 
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We define the measurable output as 𝑦, and the other 

trajectories and disturbances go into the aggregated 

variable vector 𝑥. Therefore, the following 

representation of overall system is expressed. 

( )
1

1 1

,    1 : 1

, , , ,

i

i i

n n

y

x i n

x g y x x w



 +

−

=

= = −

= 

 (10) 

By introducing the following definition as a new state 

variables vector: 

1, , ,   1:
T i

i i

n
n

x x x i n

x x

=   =  

= 

R

R

 (11) 

Equation 9 is transferred as: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

1

1
1

,

, ,

, , , ,

n

i i i
i

n

y t Cx t f y t u t

x t Ax t B f y t x t u t

B h y t x t u t w t w t

−

+
=

= +

= +

+

  (12) 

𝐴 =

[
 
 
 
 
0
0
⋮
0
0

 

1
0
⋮
0
0

 

0
1
⋮
0
0

 

…
…
⋱
…
…

 

0
0
⋮
1
0]
 
 
 
 

∈ ℝ𝑛×𝑛,  𝐵𝑖 = [𝛿1𝑖 ,  … , 𝛿𝑖𝑛]𝑇 ∈

ℝ𝑛×1,   𝐶 = [1 0…0] ∈ ℝ1×𝑛,  𝑖 = 1 : 𝑛 

( )
( )

( )( )

( )
( ) ( ) ( )( )( )

( )

1
1 1

1 1
1 1

1

1

, ,
, , , , ,

, ,
, ,

, ,

n

n n
i i i

i i

n

g y x w
h y x u w w x f y u

y

g y x w
x f y t x t u t

x

g y x w
w

w

−

− −
+ +

=

−


= + +




+




+





 

(13) 

Along with the measurable output as first input to the 

estimator, the produced control action by the DRL is the 

second input. Accordingly, the proposed estimator gives 

the unmeasurable part of the output vector, the matched 

uncertainty and disturbance values as well. In this 

regard, the dynamical system is defined as: 

𝜉̇ = 𝛼(𝜉, 𝑦, 𝑢, 𝑡)         (14) 

where 𝜉 belongs to the n-dimensional space and 𝛼 is a 

continuous function from the (n+3)-dimensional space 

to the n-dimensional kind.  

If there exists the left-invertible mapping 𝜙1 then the 

system of Equation 14 is called a reduced order 

observer with the following manifold: 

( ) ( ) ( )2 3
1 1 1{ , , , ,  |  , , , , , , }ny x u t x y u t y u t   +=  =M R  (15) 

Therefore, the reduced order ESO is paraphrased as the 

dynamical system of Equation 14 along with manifold 

introduced by Equation 15. Now, imagine the mapping 

𝜙1 is of the form: 

( ) ( )1 1, , , , ,x y u t x y u t = +  (16) 

Considering this case, the defined manifold is replaced 

by: 

( ) ( ) ( ) 2 3
1 1 1, , , , | , , , , ,ny x u t x y u t y u t   +=  + =M R  (17) 

In the equality of the set in Equation 17, by replacing 

the function as estimation of 𝑥: 

( ) ( ) ( )1 1 1, , , , , , , ,y u t y u t y u t    = −  (18) 

By assuming a manifold coordinate of Equation 7 to 

describe the distance of the routes of systems in 

Equations 13 and 14: 

( )1 , , ,z x y u t = −  (19) 

Considering the 𝜂1(𝜉, 𝑦, 𝑢, 𝑡) as �̂�, the difference 

between 𝑥 and �̂� is obtained as error estimation of the 

state variable. The derivative of the Equation 19 and the 

substitution of corresponding parameters in Equation 13 

lead to:  

�̇�(𝑡) = (𝐴 −
𝜕𝜂1

𝜕𝑦
𝐶) 𝑧(𝑡) + (𝐴 −

𝜕𝜂1

𝜕𝑦
𝐶) 𝜂1(𝜉(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑡) 

+∑ 𝐵𝑖𝑓𝑖+1(𝑦(𝑡), �̄�𝑖(𝑡), 𝑢(𝑡))𝑛-1
𝑖=1 +

𝐵𝑛ℎ(𝑦(𝑡), 𝑥(𝑡), 𝑢(𝑡),𝑤(𝑡), �̇�(𝑡)) 

−
𝜕𝜂1

𝜕𝑦
𝑓1(𝑦(𝑡), 𝑢(𝑡)) −

𝜕𝜂1

𝜕𝑢
�̇�(𝑡) −

𝜕𝜂1

𝜕𝑡
−

𝜕𝜂1

𝜕𝜉
𝛼(𝜉(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑡) 

(20) 

If 
𝜕𝜂1

𝜕𝜉
 doesn’t have the zero determinant, we introduce 

the expression for 𝛼 to simplify Equation 20: 

𝛼(𝜉, 𝑦, 𝑢, 𝑡) = (
𝜕𝜂1

𝜕𝜉
)

-1
((𝐴 −

𝜕𝜂1

𝜕𝑦
𝐶) 𝜂1(𝜉, 𝑦, 𝑢, 𝑡) + ∑ 𝐵𝑖𝑓𝑖+1(𝑦, �̂̄� 𝑖 , 𝑢)𝑛-1

𝑖=1 ) + 

(
𝜕𝜂1

𝜕𝜉
)

-1
(−

𝜕𝜂1

𝜕𝑦
𝑓1(𝑦, 𝑢) −

𝜕𝜂1

𝜕𝑢
�̇� −

𝜕𝜂1

𝜕𝑡
) 

(21) 

where �̂̅� is defined as component-wise based on �̂�. 

Consequently, the system of Equation 20 is reduced as 

25: 

�̇�(𝑡) = (𝐴 −
𝜕𝜂1

𝜕𝑦
𝐶) 𝑧(𝑡) + 

∑𝑛−1
𝑖=1 𝐵𝑖 (𝑓𝑖+1(𝑦(𝑡), �̄�𝑖(𝑡), 𝑢(𝑡)) −

𝑓𝑖+1(𝑦(𝑡), �̂̄� 𝑖(𝑡), 𝑢(𝑡))) + 

𝐵𝑛ℎ(𝑦(𝑡), 𝑥(𝑡), 𝑢(𝑡),𝑤(𝑡), �̇�(𝑡)) 

(22) 

The matrix inequality of Equation 22 to be stable is as 

follows: 

1 1
1 1 1

1

2
0    

T

P A C A C P P
y y

     
− + − +    
      ٍ

 (23) 
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Theorem 1. Considering the prolonged system of 

Equation 13, the system of Equation 14 with given 

dynamics in Equation 21 is a reduced order ESO and 

the corresponding state estimation is obtained as �̂� =
 𝜂1(𝜉, 𝑦, 𝑢, 𝑡). 

Proof.  We present the following Lyapunov function as: 

𝑉1(𝑧) = 𝑧𝑇𝑃1𝑧  (24) 

Taking the time derivative of Equation 24 and using the 

equivalent amounts of Equations 22 and 23 gives: 

�̇�1(𝑧(𝑡)) ≤ −
2

𝜖1
𝑉1(𝑧(𝑡)) + 

2𝑧𝑇(𝑡) ∑𝑛−1
𝑖=1 𝑃1𝐵𝑖 (𝑓𝑖+1(𝑦(𝑡), �̄�𝑖(𝑡), 𝑢(𝑡)) −

𝑓𝑖+1(𝑦(𝑡), �̂̄� 𝑖(𝑡), 𝑢(𝑡))) +

2𝑧𝑇(𝑡)𝑃1𝐵𝑛ℎ(𝑦(𝑡), 𝑥(𝑡), 𝑢(𝑡),𝑤(𝑡), �̇�(𝑡))  

(25) 

Assuming ℎ(. ) is restricted to an upper bound as: 

|ℎ(𝑦, 𝑥, 𝑢, 𝑤, �̇�)| ≤ ℎ0   (26) 

Locally Lipschitz assumption of 𝑓 with 𝑙𝑓𝑖 multiplier 

gives 21: 

𝑓𝑖(𝑦, �̄�𝑖−1, 𝑢) − 𝑓𝑖(𝑦, �̂̄� 𝑖−1, 𝑢) ≤ 𝑙𝑓𝑖𝑧,   𝑖 = 2: 𝑛  (27) 

Now, the inequality (25) is rewritten as: 

�̇�1(𝑧(𝑡)) ≤ −(
2

𝜖1
− 2𝑙𝑓

𝜆𝑚𝑎𝑥(𝑃1)

𝜆𝑚𝑖𝑛(𝑃1)
)𝑉1(𝑧(𝑡)) +

2ℎ0
𝜆𝑚𝑎𝑥(𝑃1)

√𝜆𝑚𝑖𝑛(𝑃1)
√𝑉1(𝑧(𝑡))  

(28) 

To complete the proof, the Λ𝑟-attractivity of the 

manifold ℳ1 is explained as follows.  

𝛬𝑟-attractivity: For each 𝑡0 ∈ ℝ≥0, 𝑟0 is available 

such that if 𝑧(𝑡0) ∈ Λ𝑟0 , then 𝑧(𝑡) is bounded for all 𝑡 ≥

𝑡0 and moreover, the positive 𝑟1 and its finite reaching 

time are as 𝑡𝑟 = 𝑡𝑟(𝑟0, 𝑟1), in this sense 𝑧(𝑡) ∈ Λ𝑟1
 for 

all 𝑡 ≥ 𝑡0 + 𝑡𝑟. 

Now, assuming: 

𝜖1 < 𝜖1
′ =

𝜆𝑚𝑖𝑛(𝑃1)

𝑙𝑓𝜆𝑚𝑎𝑥(𝑃1)
  (29) 

Application of the comparison lemma on 28 yields in: 

( )
( )
( )

( )
( )
( )

( )

( )
( )
( )

( )

1 1
0 1 0

1 1

10
1 0

1

exp                     

max max

min min

max

min

P P
z t z t h

P P

Pt t
h

P

 


 




 

 
  −
 
 

 −
 − + 

 
 

 ٍ

 ٍ
 ٍ

 (30) 

( ) 1
1

1
'

1

            

1

 =

−

 ٍ
 ٍ

 ٍ

 ٍ

 
(31) 

The inequality 30 implies that the trajectories starting in 

Λ𝑟0
 stay bounded. Furthermore, the reaching time is of 

the form: 

( )
( )
( )

( )
( )
( )

( )1 1
1 0 1 0

2 1 1

1
  ln  

max max
r

min min

P P
t z t h

r P P

 
 

 

 
 = −
 
 

 ٍ  ٍ  (32) 

With the positive scalars 𝑟2 < 𝑟1 < 𝑟0 gives: 

( )
( )

1 2
1 1

1 1 2
0

1 1

''      

'

max

min

r r

P r r
h

P





−
 =

−
+

 ٍ  ٍ

 ٍ

 
(33) 

Noting that 𝜖′′1 < 𝜖′1, and Equation 33 holds for the 

selected parameters, then the manifold ℳ1 is Λ𝑟-

attractive for any 𝑟1 < 𝑟0. So, the system of Equation 14 

with defined dynamics of Equation 21 is a reduced 

order ESO.∎ 

Corollary 1. If Theorem 1 satisfied, so 𝑙𝑖𝑚
(𝑡→∞)
(𝜖1→0)

𝑧(𝑡) = 0.  

Proof. Taking the supremum of Equation 30 leads to: 

𝑙𝑖𝑚
𝑡→∞

𝑧(𝑡) ≤
𝜆𝑚𝑎𝑥(𝑃1)

𝜆𝑚𝑖𝑛(𝑃1)
𝜆(𝜖1)ℎ0  (34) 

Since lim
𝜖1→0

𝜆(𝜖1) = 𝑂(𝜖1), the ultimate bound of ‖𝑧(𝑡)‖ 

approaches to zero as 𝜖1 → 0.∎ 

 Convergence analysis via LMIs 

Considering the 𝑖𝑡ℎ component of 
𝜕𝜂

𝜕𝜈
 as 𝑎𝑖: 

𝑎𝑖(𝑡) = 𝑎𝑖
0 + 𝑎𝑖

1𝜃𝑖(𝑡),  

𝑎𝑖
𝑚𝑖𝑛 ≤ 𝑎𝑖(𝑡) ≤ 𝑎𝑖

𝑚𝑎𝑥,

𝑎𝑖
0 = (𝑎𝑖

𝑚𝑎𝑥 + 𝑎𝑖
𝑚𝑖𝑛)/2,

𝑎𝑖
1 = (𝑎𝑖

𝑚𝑎𝑥 − 𝑎𝑖
𝑚𝑖𝑛)/2

|𝜃𝑖(𝑡)| ≤ 1    

  (35) 

Based on Equation 35, we obtain the following 

representation of coefficient of 𝑧(𝑡) in Equation 22, 

𝐴 −
𝜕𝜂

𝜕𝜈
(𝑡)𝐶 = 𝐴0 + 𝐴1𝛩(𝑡)𝐴2  (36) 

With the assumptions: 

𝐴0 =

[
 
 
 
 
 

−𝑎1
0

−𝑎2
0

⋮
−𝑎𝑛−1

0

−𝑎𝑛
0

 

1
0
⋮
0
0

 

0
1
⋮
0
0

 

…
…
⋱
…
…

 

0
0
⋮
1
0]
 
 
 
 
 

∈ ℝ𝑛×𝑛,  

 

( )

( ) ( )( ) ( ) ( )

 

1
1 1

1
2 2

1 11 1 1

1
-1 -1

1

n

j j=1

2 21 2

2

- 0 0 0

- 0 0 0

= , , , =

- 0 0 0

- 0 0 0

=diag t , = ,

= , , ,

1 0 0 0

0 0 0 0

                                    =

0 0 0 0

0 0 0

j

j

n n
n j

n n j

n nj

n n
j j

T
n

j

a

a

A A A A

a

a

t t t

A A A

A















 
 
 
 
  
 
  
 
  

   



   

0

n n

 
 
 
 
 
 
 
 

 
(37) 
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Theorem 2. Suppose that Equation 37 is valid for the 

components of 
𝜕𝜂

𝜕𝜈
 and the matrix 𝑃 is available as 

following:      

0 0
1 2

1

2

2

    0 0           

0

T
T

T

PA A P P
PA A

A P I

A I

 
+ + 

 
 − 
 

− 
 
 

 ٍ

 (38) 

Then, Equation 23 holds with positive 𝜖1 = 𝜖 and 

matrix 𝑃. 

Proof. Considering Equation 36, the inequality 23 is 

written as: 

( )( ) ( )( )0 1 2 0 1 2

2
Θ Θ 0 

T
P A A t A A A t A P P+ + + + 

 ٍ
 (39) 

According to Young’s inequality together with 

constraint Θ𝑇(𝑡)Θ(𝑡) ≤ 𝐼, 

( ) ( )1 2 2 1 1 1 2 2

1
ΘT T T T TPA t A A t A P PA A P A A


 +  +  (40) 

where 𝜇 is a positive constant. The inequality 40 

satisfies if the following is true. 

0 0 1 1 2 2

2 1
0 T T TPA A P P PA A P A A


+ + + + 

 ٍ
 (41) 

Therefore, inequality 41 is equivalent to the viability of 

LMI 38 for a non-negative 𝑃.∎ 

Assuming fixed values of  
𝜕𝜂

𝜕𝜈
 as 𝑘𝑖: 

( )
,     1, 2,..,  

i

ik i n





= =


 (42) 

where 𝜂(𝑖) stands for the 𝑖𝑡ℎ component of 𝜂. Therefore, 

𝜂 is written as: 

( ) ( ) ( ),    
i

i ik     = +  (43) 

where the functions 𝜛𝑖(𝜉) satisfy the condition of non-

zero determinant of 
𝜕𝜂(𝑖)

𝜕𝜈
. The fixed 

𝜕𝜂(𝑖)

𝜕𝜈
 reduces LMI 38 

to: 

0 0

2
0   TPA A P P+ + 

 ٍ
 (44) 

Now, using the generalized eigenvalue solvers, the 

solution of 𝑃 is obtained. 

 

 

3. NUMERICAL RESULTS  
 

The Simulink diagram of the designed control model in 

MATLAB is illustrated in Figure 1. The figure shows 

that the first step is to simulate the system in order to 

calculate the outputs. Then, the measured output along 

with the assigned value for input are fed to the observer 

block to estimate the unmeasured output and the 

unknown disturbances. Besides, our main block 

including the DRL controller will suggest the action 𝑢 

and it tries to reach the optimal input action along with 

correct estimation of the mentioned parameters with use 

of the immersion- and invariance-based extended state 

observer. The implemented DRL has the structure as 

shown in Figure 2. In this figure, the actor and critic 

networks are stacked in a row. The lagged version of 

two main networks is not shown but they are necessary 

to avoid the divergence during the updating process 

step. The pseudo code of the DRL as clarification is 

brought in Table 2. The output function for getting the 

optimal control action is described as: 

( )'
1

terminates at step j 1
 

max , ; otherwise 

j

j

j a j

r
y

r s a  +

+


=



+

Q

  
(45) 

where, the 𝑸𝜗′
′  stands for the lagged version of the main 

critic network, 𝛾 is the coefficient and 𝑟𝑗 indicates the 

cumulative reward during processing time. DRL, in 

every sea state based on the environment’s observed 

conditions, learns the required optimal force on the 

piston of PTO to capture the uniform energy, i.e., the 

structure faces the waves instead of internal models. At 

each processing time, the control system determines a 

change in the action, which is carried out by the 

hydraulic PTO unit as the agent. Through accumulating 

rewards as the function of the produced electrical power 

and in an alteration of environment’s state, where the 

state is indicated by the substantial wave altitude, 𝐻𝑠, 

the average zero-crossing span, T, and the PTO 

damping factor. For the oscillatory essence of sobriety 

waves, it is essential to average the captured power in 

the reward function over a horizon, 𝐻, in one wave 

cycle during which the state 𝑠𝑛 and action 𝑎𝑛−1 are 

fixed. Next, a new action 𝑎𝑛 is designated in an instant 

modification of state to 𝑠𝑛+1 and a new mean 

progression. The process of DRL is described in detail 

as follows.  

State Space: As noted before, the circumstances 

variables are supposed to be the effective wave height, 

average zero-crossing span, and PTO damping 

multiplier so that the assumed RL state space is:  

1: ,

1: ,
, , , , , 1:|     

j J

k K
j k l s j z k PTO l l LS s s H T B

=

=
=

 
 

= = + + 
  

 (46) 

Action Space: The action series consists of three 

amounts based on the selected state space as following:  

( )  {  | ,  0,   }PTO PTOA a B B= − +  (47) 

where ∆𝐵𝑃𝑇𝑂 = 𝐵𝑃𝑇𝑂,𝑘+1 − 𝐵𝑃𝑇𝑂,𝑘. Equivalent states to 
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Figure 1. Block diagram of the entire observer and controller in MATLAB 

 

 

 
Figure 2. Stacked critic-actor network in DRL (29) 

 
 
the extreme damping constants, i.e., 𝐵𝑃𝑇𝑂,1 and 𝐵𝑃𝑇𝑂,𝐿, 

have some actions so as to preclude the controller from 

surpassing the boundary of state space. For example, 

for 𝐵𝑃𝑇𝑂,1 case, the candidate +∆𝐵𝑃𝑇𝑂 is left out. 

Reward: In DRL field, the aim to propose a reward 

function is to optimize the performance of the agent 

through negative reward for incorrect action or positive 

for correct one, and the reward function is maximized at 

the end of processing time. Hence, for the I&I RSO 

control system of WECs, the compensation function is 

considered to be pertinent to the captured power. The 

effect of variations in the momentous wave height on 

the average produced power, 𝑃𝑎𝑣𝑔, is more than 

variations in the PTO restraining constant. Considering 

the harvested power proportional to the square of the 

substantial wave elevation, the reward function is well-

defined as 𝑃𝑎𝑣𝑔/𝐻𝑠
2  to obtain a dimensionless function. 

Additionally, owing to the stiff quantization of the 

condition variables and the random environment of 

periodic waves, the reward function is alleviated by 

averaging a number 𝑀 of 𝑃𝑎𝑣𝑔/𝐻𝑠
2 values for each state 

along with the average captured power over a 

horizon 𝐻. Keeping the 𝑀 recent 𝑃𝑎𝑣𝑔/𝐻𝑠
2  quantities 

for each state in a matrix, 𝑅, whose magnitude is as a 

maximum 𝑛𝑠 × 𝑀, with 𝑛𝑠 = 𝐽 × 𝐾 × 𝐿 as the number 

of states.  

ReLU 

𝑾𝟏[𝟏𝟔, 𝟏𝟐𝟖] 

ReLU 

𝑾𝟐[𝟏𝟐𝟖, 𝟐𝟎𝟎]              �̇� 𝑥. . 𝜃 𝜔𝑟  

ReLU 

𝑾𝟓[𝟐𝟎𝟎,𝟏] 

𝑾𝟏[𝟏𝟔,𝟏𝟐𝟖] 

ReLU 

𝑾𝟐[𝟏𝟐𝟖,𝟐𝟎𝟎] 𝑾𝟑[𝟑, 𝟐𝟎𝟎] 

Addition Layer 

𝑾𝟒[𝟒𝟎𝟎, 𝟐𝟎𝟎] 

 𝝅𝝋 

             �̇� 𝑥. . 𝜃 𝜔𝑟  

Q𝜗   
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TABLE 2. Pseudo code of the training process of the Deep 

Deterministic Policy Gradient (DDPG) algorithm 

Algorithm 1: DDPG algorithm 

Randomly initialization of weights 𝜗 and 𝜑 in critic network 𝐐𝜗(𝑠, 𝑎 ∣
𝜗) and actor 𝜋𝜑(𝑠 ∣ 𝜑).  

Initialization of target lagged network 𝐐𝜗′
′  and 𝜋𝜙′

′  with weights 𝜗′ ←

𝜗.𝜙′ ← 𝜑 

Replay buffer 𝑅 Initialization 

for incident = 1.𝑀 ensure 

    Take initial state 𝑠1 

    for t = 1. T do 

        Choose action 𝑎𝑡 = 𝜇(𝑠𝑡 ∣ 𝜃𝜇) based on the current policy  

        Accomplish action 𝑎𝑡 to detect reward 𝑟𝑡  and new-fangled state 

𝑠𝑡+1 

        Save evolution (𝑠𝑡. 𝑎𝑡. 𝑟𝑡 . 𝑠𝑡+1) in 𝑅 

        Sample a spontaneous small group of 𝑁 transitions 
(𝑠𝑖 . 𝑎𝑖 . 𝑟𝑖 . 𝑠𝑖+1) from 𝑅 

        Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝐐𝜗′
′ (𝐬𝑖

′. 𝜋𝜙′
′ (𝐬𝑖

′)) 

       Update critic by differentiation of the loss: 𝐿 =
1

𝑁
∑(𝐐𝜗(𝐬𝑖. 𝐚𝑖) −

𝑦𝑖(𝒔𝑖.  𝒂𝑖.  𝒓𝑖.  𝐬𝑖
′))2 with respect to weights 

       Revise the performer procedure employing the sampled policy 

slope: 

∇𝜑𝐽 ≈
1

𝑁
∑ 

𝑖

 ∇𝑎𝑄(𝑠. 𝑎 ∣ 𝜗)|

𝑠=𝑠𝑖.𝑎=𝜋𝜑

∇𝜑𝜋𝜑(𝑠 ∣ 𝜑)|

𝑠𝑖

 

       Update the target networks: 

𝜗′(𝑡+1)
← 𝜏𝜗 + (1 − 𝜏)𝜗′(𝑡)

𝜑′(𝑡+1)
← 𝜏𝜑 + (1 − 𝜏)𝜑′(𝑡)

 

  end for 

end for 

 

 

Therefore, the average amount in each state is 

described with the vector 𝒎 =  〈𝑅(𝑠,𝑚)〉𝑚=1:(𝑀∨𝑒𝑛𝑑) of 

size 𝑛𝑠. The states of the vector 𝒎 include the vector-

oriented version of Equation 46, such that the discrete 

quantities of 𝐵𝑃𝑇𝑂 , 𝐻𝑠 and 𝑇𝑧 represent the inner-most, 

middle and outermost loop of vectorization, 

respectively. 

Regarding the values of ∆𝐵𝑃𝑇𝑂, for 𝐵𝑃𝑇𝑂 > 0, there 

exists a bit of difference between the averages of 

adjacent damping coefficients of PTO, which yields 

extreme problems for the confluence of the Q-learning 

process. Hence, the benefit of desiring the optimum 

balancing multiplier in apiece sea condition is obvious 

to detour the convergence issues. Assignment of a factor 

as the power of the values in vector  𝒎 deals with the 

close amounts in the neighboring coefficients. 

Furthermore, with the mentioned mathematical 

operation, the excessive memory is required to keep the 

reward values. Therefore, it is essential from a 

mathematical point of view to primarily regularize the 

quantity of the vector for every individual condition 

concerning the highest amount for each sea condition. 

Regarding 𝑠𝑛, we should find the maximum quantity 

between the indexes 𝑜 = floor (
𝑠𝑛−1

𝐿
) 𝐿 + 1 and 𝑝 =

 floor (
𝑠𝑛−1

𝐿
) 𝐿 + 𝐿 of the vector 𝒎. Also, the power 

factor, 𝑘, is considered an odd digit to maintain the sign 

of the produced power. The smoother the quantization 

of PTO balancing value, the superior 𝑘 is considered to 

expedite the learning process. On the other hand, very 

great values for 𝑘 result in convergence issues 

especially with noise affected power in irregular wave. 

Furthermore, selecting the optimum damping value by 

itself makes the structure destruction i.e., submergence 

or emergence, if not complete failure. So, the penalty 

amount should be considered to avoid exceeding the 

upper bound limitation of translational movement of the 

structure, 𝑧𝑚𝑎𝑥 . The reward function is defined as 

following with arbitrary chosen amount the same as 𝑝 =
−4 for penalty: 

𝑟𝑛+1 = {
[

𝑚(𝑠𝑛)

max𝑖=𝑜:𝑝𝑚(𝑖)
]
𝑘

    𝑖𝑓 |𝑚𝑎𝑥(𝑧)| ≤ 𝑧max 

−4                            𝑖𝑓 |𝑚𝑎𝑥(𝑧)| > 𝑧max

  

The system is acting in the presence of wave with 

the following regular form: 

( )sin               a t kx  = −  (48) 

We can describe the irregular wave by using the 

superposition principle consisting of 𝑛 regular waves 

with variant amplitude, frequency, and phase. 

Therefore, the wave elevation 𝜉𝑛 is given as: 

( ) ( ), sin       An n n nx t t k x  = − +  ٍ  (49) 

where the value 𝜖𝑛 stands for the stochastic phase that 

its value is distributed between 0 and 2𝜋. If all 

elevations are summed up, the following shows the total 

elevation of the proposed wave structure: 

( ) ( )
1

, sin     
N

An n n n
n

x t t k x  
=

= − +  ٍ  (50) 

The sea state is typically described in terms of the wave 

spectrum 𝑆(𝜔), which explains information about the 

wave energy for various frequencies. 𝐸𝑛, the energy in 

each component is defined as follows. 

( ) 21
  

2

n
n An

E
s

g
  


 = =  (51) 

Therefore, the value of the amplitude is found: 

( ) ( )2 Δ cosn n n n nS t k x   = − +   ٍ (52) 

A standardized wave spectrum to model the sea states is 

JONSWAP, which is developed for the North Sea. The 

formula of this spectrum is: 
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 

 
−   

 =  
(53) 

where 𝛾 is peak number, 𝜎 decides the form of the 

spectrum in the high frequency part and with assuming 

𝑇𝑝 as peak frequency. The value of the parameter 𝜔𝑝 is: 

2
             p

pT


 =  (54) 

The simulated disturbance and uncertainty assuming 

JONSWAP spectrum is shown in Figure 3 in which the 

randomness of the proposed wave spectrum is vivid. 

The measured output of the system is illustrated as 

Figure 4 showing the stability of the desired state. With 

application of the above assumptions, the simulated 

results in MATLAB are as follows. Through adding the 

measurement noise, we tried to show the efficacy of the 

proposed controller. The results of Figure 5 illustrate 

that only one second takes to achieve the exact value of 

the unmeasured output and no effect of fluctuation due 

to the noise is seen. 

  

 

 
Figure 3. Uncertainty analysis based on the JONSWAP 

spectrum 

 

 

 
Figure 4. Simulation result for the displacement state variable 

 
Figure 5. Comparison of unmeasured velocity in simulated 

and estimated phase 

 

 

 
Figure 6. Unknown disturbance and uncertainty with 

simulated and estimated scenario 

 

 

 
Figure 7. Control action applied on the PTO with DRL 

 

 

As shown in Figure 6, the uncertainty of the problem is 

tracked quickly so that the tracking error approaches to 

zero after two seconds. The estimated results can be 
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used in the other control purposes including disturbance 

rejection. The significant point of the correct estimation 

with low settling time refers to the application of the 

concise control action. Figure 7 illustrates the applied 

force required to reach the uniform and maximum 

amount of energy and correct tracking. The accumulated 

reward during the processing time is demonstrated in 

Figure 8. The accumulated reward is increased so that 

its final value stands for the optimum control policy 

applied by the actor network and also, the maximum 

amount of energy. The captured energy during this task 

is demonstrated as Figure 9. Although, the fluctuation in 

some periods is clear, oscillation is not bothersome and 

is in the acceptable range for the consumer.  

 

 

 
Figure 8. Captured energy during the processing time by DRL 

 

 

 
Figure 9. Captured energy during the processing time 

by DRL 

 

 
4. CONCLUSION AND REMARKS 

 

This work made an effort to address the undesirable 

fluctuation in the utilization of energy produced by a 

WEC. To do this, we created the WEC's structure model 

along with all the necessary dynamical equations for the 

proposed controller's implementation. Next, we 

presented the new RSO dealing with the uncertainties of 

the structure and unmeasured outputs. The technique of 

immersion and invariance manifold was thoroughly 

integrated and confirmed by using LMI. The demand 

for regulating intelligent action applied to structures 

guided us to create the DRL. Therefore, the built 

network with appropriate training method was 

thoroughly detailed in the study. Finally, the numerical 

results carried out using MATLAB to examine and 

verify the performance of the suggested control system. 

The results indicated that our novel designed control 

method has a significant performance, both in 

estimating the unmeasured output and unknown 

disturbance, as well as in implementing the control 

policy. The future extent of our study may be altered to 

disturbance rejection problem and extended state 

observer design. 
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Persian Abstract 

 چکیده 
  ل ی. با توجه به پتانس شودی م  یمانند هوش مصنوع  دیجد  یهای از فناور  یریگو بهره  ریدپذ یتجد  یانرژ  دیتول  یهادستگاه   شرفت یو پ  ب یباعث ترغ  ن،یگرمتر زم   یایدر دن   یزندگ

 ریچشمگ  یطیمح  ستیز  رات ییمقاله، تغ   نی. در ا کنندی م  فایا  کنواختی  یدر برداشت انرژ  یاتیموج نقش ح  یانرژ  یهامبدل  ست،یز  طیو تطابق آن با مح  ایامواج در  یانرژ  یبالا

  ی ریادگی.  میده  شنهادیامواج پ  یانرژ  یهابر عملکرد مبدل  ریاغتشاشات و اثرات باد متغ   ری کاهش تأث  یهوشمند را برا  دبکیکنترل ف   ستمیس  ک یتا    میارا در نظر گرفته  هاانوس یدر اق

 ق،یعم  یتیتقو  یریادگ یبا استفاده از    ن،یاست. بنابرا  اهیجعبه س  یهاامواج مانند مدل  یهامبدل  صیقدرتمند، توانمند به تشخ  یهوش مصنوع  کیتکن   ک یبه عنوان    قی عم  یتیتقو

  از یو ن   یریاندازه گ  یهادر داده  عف. ضشوندی زده م  ن یها به طور همزمان در بخش نظارت بر حالت تخمکرد و اغتشاش   یریاندازه گ میبه طور مستق  توانیکه نم  یحالت  یرهایمتغ 

تعداد محدود  پ  قیعم  یعصب  یهادر شبکه   ها هیاز لا  یبه کاربرد بلادرنگ  با  تغ   یوربر روش غوطه  یمبتن  افتهیگر حالت توسعه  مشاهده  یسازاده یرا  با    یریناپذ  ر ییو  مقابله  که 

 ی تیتقو  یریادگیمنتقد وارد مدل  -عملگر  یهابه عنوان شبکه   ینیتخم  یپارامترها  ،یکنترل هوشمند کل  ستمی. در سشودیجبران م  بخشد،یناخواسته را بهبود م  یخارج  یزهاینو

  ن یی عملگر را تع   ینیبشیدقت مقدار پ  یابیارز   یبرا  یریگمیتصم  اریمع   یکه شبکه منتقد بعد  یکنترل است، در حال  یورود  ینیبشیمسئول پ  هی. شبکه عملگر اولشوندی م  قیعم

سپسکندیم خروج  ،.  طر  یمقدار  از  منتقد  م  هاه یلا  قیمرحله  برگردانده  عقب  وزن   شود ی به  به  یهاتا  نتاشبکه  شوند.  شب  جیروز  نرم   یسازه یآزمون  نشان در  متلب  دهنده  افزار 

 است.  دیجد  شدهی طراحهوشمندانه  قی عم یتیتقو یریادگیروش  تیمتناظر و اهم یواقع  رینشده با مقاد یریگاندازه یهاپارامترها/حالت  ییگراهم

 


