IJE TRANSACTIONS C: Aspects Vol. 31, No. 3 (March 2018) 528-535    Article in Press

PDF URL: http://www.ije.ir/Vol31/No3/C/17.pdf  
downloaded Downloaded: 0   viewed Viewed: 63

R. Hasanzadeh and T. Azdast
( Received: December 27, 2016 – Accepted: October 12, 2017 )

Abstract    Polyamide 6 (PA6) is used in many applications due to its advantages and improving its properties seems essential. For this purpose in the present study, PA6 was melt compounded with various multi-walled carbon nanotubes (MWCNTs) contents and then was foamed using Azodi carbon amide (ACA) as blowing agent under different injection molding conditions. Morphological properties were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests. The results demonstrated that an appropriate distribution of MWCNTs was observed in polymeric matrix and 0.85, 0.94 and 1 Å increase in distance between walls of CNTs was observed. Also, the SEM results illustrated that microcellular structure was achieved in all samples. The results illuminated that mean cell size was improved about 34% in samples containing 1 wt% MWCNT. The tensile properties of samples were investigated and the effect of MWCNTs content was studied on specific tensile and yield strengths. The results indicated that specific tensile strength and yield strength were significantly increased almost 164% and 147% by addition of 1 wt% of MWCNTs, respectively.


Keywords    Foam, Mechanical properties, Nanocomposite, Polymer, XRD


چکیده    پلی آمید6 به دلیل مزایایی که دارد در کاربردهای مختلفی مورد استفاده قرار می­گیرد و بنابراین بهبود خواص آن ضروری به نظر می­رسد. بدین منظور در تحقیق حاضر پلی آمید6 با درصدهای وزنی مختلف نانولوله کربنی چند دیواره اختلاط ذوبی شد و سپس با استفاده از عامل فوم­زای آزودی کربن آمید تحت شرایط فرآیندی مختلف تزریق، فوم شد. خواص ساختاری با استفاده از تست­های پراش اشعه ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM) بررسی شد. نتایج نشان داد که توزیع مناسبی از نانولوله­های کربنی چند دیواره داخل ماتریس پلیمری حاصل شد به گونه­ای که 85/0، 94/0 و 1 آنگستروم افزایش فاصله در دیواره­های نانولوله­های کربنی مشاهده شد. همچنین نتایج مربوط به تست SEM نشان داد که ساختار میکروسلولی مناسبی حاصل شد و متوسط اندازه سلولی در نمونه­های فوم نانوکامپوزیتی حاوی 1% نانولوله کربنی به میزان 34% بهبود یافت. خواص کششی نمونه­های فوم نانوکامپوزیتی بررسی شد و تاثیر نانولوله­های کربنی بر روی استحکام کششی و استحکام تسلیم ویژه مورد مطالعه قرار گرفت. نتایج حکایت از افزایش 164% و 147% در استحکام کششی ویژه و استحکام تسلیم ویژه در نمونه­های حاوی 1% وزنی نانولوله کربنی داشت.

References    [1] Junian, S.S., Sahari, J., Makmud, M.Z.H., Arief, Y.Z. and Wahit, M.U., “Tensile and physical properties of linear low density polyethylene-natural rubber composite: comparison between size and filler types”. International Journal of Engieneeering (IJE), TRANSACTIONS C: Aspects, Vol. 29, (2016), page no. 1257-1262. [2] Li, J., Zhang, G., Ma, Z., Fan, X., Fan, X., Qin, J. and Shi, X., “Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams”. Composites Science and Technology, Vol. 129, (2016), page no.70-78. [3] Gedler, G., Antunes, M., Borca-Tasciuc, T., Velasco, J.I. and Ozisik, R., “Effects of graphene concentration, relative density and cellular morphology on the thermal conductivity of polycarbonate–graphene nanocomposite foams”. European Polymer Journal, Vol. 75, (2016), page no..190-199. [4] Almajid, A., Sorochynska, L., Friedrich, K. and Wetzel, B., “Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites”. Plastics, Rubber and Composites, Vol. 44(2), (2015), page no.50-62. [5] Dey, A., Bajpai, O.P., Sikder, A.K., Chattopadhyay, S. and Khan, M.A.S., “Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting”. Renewable and Sustainable Energy Reviews, Vol. 53, page no.653-671. [6] Sener, B. and Kurtaran, H., “Optimization of process parameters for rectangular cup deep drawing by the Taguchi method and genetic algorithm”. Materials Testing, Vol. 58(3), (2016), page no.238-245. [7] Balki, M.K., Sayin, C. and Sarıkaya, M., “Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol”. Fuel, Vol. 180, (2016), page no.630-637. [8] Esmaili, P., Azdast, T., Doniavi, A., Hasanzadeh, R., Mamaghani, S. and Lee, R. E., “Experimental investigation of mechanical properties of injected polymeric nanocomposites containing multi-walled carbon nanotubes according to design of experiments”. Journal of Science and Technology of Composites, Vol. 2(3), (2015), page no.67-74. [9] Liu, T., Phang, I.Y., Shen, L., Chow, S.Y. and Zhang, W.D., “Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites”. Macromolecules, Vol. 37(19), (2004), page no.7214-7222. [10] Yuan, M., Turng, L.S., Gong, S., Caulfield, D., Hunt, C. and Spindler, R., “Study of injection molded microcellular polyamide‐6 nanocomposites”. Polymer Engineering & Science, Vol. 44(4), (2004), page no.673-686. [11] Shishavan, S.M., Azdast, T. and Ahmadi, S.R., “Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites”. Materials & Design, Vol. 58, (2014), page no.527-534. [12] Dixit, A. and Kumar, K., “Optimization of Mechanical Properties of Silica Gel Reinforced Aluminium MMC by using Taguchi Method”. Materials Today: Proceedings, Vol. 2(4), (2015), page no.2359-2366. [13] Modanloo, V., Hasanzadeh, R. and Esmaili, P., “The study of deep drawing of brass-steel laminated sheet composite using taguchi method”. International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 1, (2016), 103-112. [14] Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E.V.A., Shimamura, Y., Inoue, Y., Arikawa, S., Yoneyama, S. and Ogihara, S., “Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing”. Composites Part B: Engineering, Vol. 85, (2016), page no. 15-23. [15] Guo, J., Liu, Y., Prada‐Silvy, R., Tan, Y., Azad, S., Krause, B., Pötschke, P. and Grady, B.P., “Aspect ratio effects of multi‐walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites”. Journal of Polymer Science Part B: Polymer Physics, Vol. 52(1), (2014), page no. 73-83. [16] Iqbal, Q., Bernstein, P., Zhu, Y., Rahamim, J., Cebe, P. and Staii, C., “Quantitative analysis of mechanical and electrostatic properties of poly (lactic) acid fibers and poly (lactic) acid—carbon nanotube composites using atomic force microscopy”. Nanotechnology, Vol. 26(10), (2015), page no.105702-105710.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir