IJE TRANSACTIONS B: Applications Vol. 31, No. 5 (May 2018) 646-655    Article in Press

PDF URL: http://www.ije.ir/Vol31/No5/B/16.pdf  
downloaded Downloaded: 0   viewed Viewed: 27

E. Farsi, B. Yousefi Yegane and A. Moniri
( Received: February 21, 2017 – Accepted: March 25, 2018 )

Abstract    Due to the rapid development of technology in recent years, market competition and customer expectations have increased more than ever. In such a situation, determining the appropriate policy of inventory control, pricing and routing is vital for the survival of businesses and decisions regarding each of them are often made separately. If the desired good is perishable, designating the above-mentioned policies will be more important; therefore, in order to integrate decision-making regarding the three key components of supply chain including pricing, routing and inventory control, a mathematical model aimed at maximizing profits for a two-echelon supply chain of perishable goods, in which goods will be sent directly from the manufacturer to retailers, is proposed in this study and then, it will be solved using the CPLEX software package in GAMS environment to determine the optimal policy of the supply chain.


Keywords    Supply chain, routing, inventory control, pricing, perishable goods


چکیده    طی سال‌های اخیر به دلیل پیشرفت سریع تکنولوژی، رقابت در بازار و سطح انتظارات مشتریان بیش از پیش افزایش یافته‌است. در چنین شرایطی تعیین سیاست مناسب کنترل‌موجودی، قیمت‌‌گذاری و مسیریابی، امری حیاتی برای بقاء بنگاه‌های اقتصادی محسوب می‌شود که اغلب بطور جداگانه در مورد آنها تصمیم‌گیری می‌شود. در صورتی‌که کالای مورد نظر فسادپذیر باشد تعیین سیاست‌های عنوان شده از اهمیت بالاتری برخوردار خواهد بود؛ از این‌رو در این تحقیق به منظور یکپارچه‌سازی تصمیم‌گیری در خصوص سه مولفة کلیدی زنجیره‌تأمین شامل قیمت‌گذاری، مسیریابی و کنترل‌موجودی، یک مدل ریاضی با هدف بیشینه نمودن سود برای زنجیره‌تأمین دوسطحی اقلام فسادپذیر که در آن اقلام بطور مستقیم از سطح تولیدکننده برای خرده‌فرشان ارسال می‌گردد ارائه و سپس با استفاده از بسته نرم افزاری CPLEX در محیط GAMS به منظور تعیین سیاست بهینه زنجیره‌تأمین حل خواهد شد

References    1.     Cordeau, J. F., and Laporte, G., and  Savelsbergh, M.W. P., and  Vigo, D.,“Vehicle routing. Hanbook in operations research and management science” , Barnhart, C.; Laporte, G.; Elsevier. Transportation, Vol..14, (2007), 367-428. 2.    Mirzaei, H. A., Nakhai , I,. and Zegordi, S. H., “A new algorithm for solving the inventory routing problem with direct shipment”,  JPOM (in persian), Vol. 2, No. 1, (2012), 1-28. 3.   Liu, s. C., and Chen, j. R., “A heuristic method for the inventory routing and pricing problem in a supply chain”, Expert Systems with Applications, Vol. 38, (2011), 1447–1456. 4.   Chopra, S., and Meindl,  P., “supply chain managment: strategy, planning and operation”, 3, new  jersey, Pearson Education, (2007). 5.   Goyal, S. K.,  Giri, B. C., “Recent trends in modeling of deteriorating inventory”,  European Journal of Operational Research, Vol. 134, No.1, ( 2001), 1–16. 6.     Kleywegt, A. J., and  Nori, V. S., and  Savelsbergh, M. W. P., “ The stochastic inventory routing problem with direct deliveries”, Transportation Science, Vol. 36, No. 1, (2002), 94–118. 7.  Campbell, A. M., and  Savelsbergh, M. W. P., “A decomposition approarch for the inventory routing problem”, Transportation Science, Vol. 38, No. 4, (2004), 488-502. 8.   Andersson, H., and  Hoff, A., and  Christiansen, M., and  Hasle, G., and  Løkketangen, A.,  “Industrial aspects and literature survey: Combined inventory management and routing”, Computers & Operations Research, Vol. 37, No. 9, (2010), 1515–1536. 9.   Noor, N. M., and  Shuib, A., “Multi-Depot Instances for Inventory  Routing  Problem  Using  Clustering  Techniques”, Journal  of Industrial and Intelligent Information. , 3( 2), 2015. 10.  Farsi. E., “Inventory – routing and price integration for perishable Items” MS.c thesis, 2016(in Persian). 11.  Popović,  D., and Vidović, M., and  Radivojević, G.,  “Variable Neighborhood Search heuristic for the Inventory Routing Problem in fuel delivery”, Expert Systems with Applications, Vol. 39, No. 18, (2012), 13390–13398. 12.  Le, T., and  Diabat, A., and  Richard, J.-P., Yih, Y., “A column generation-based heuristic algorithm for an inventory routing problem with perishable goods”, Optimization Letters, (2012), 1–22. 13.    Li, K., and  Chen, B., Sivakumar, A. L., and  Wu. Y., “An inventory–routing problem with the objective of travel time minimization”,  European Journal of Operational Research, 2013. 14.  Vidović, M., and  Popović, D., and  Ratković, B., “Mixed integer and heuristics model for the inventory routing problem in fuel delivery”,  International journal of production economics, Vol.147, (2014), 593–604.  15.   Aksen, D., and  Kaya, O., and  Salman, S., and  Tüncel, Ö., “ An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem”,  European Journal of Operational Research, Vol. 239, No. 2, (2014), 413-426. 16.  Singh,T., and Arbogast, J. E., and  Neagu, N., “ An incremental approach using local-search heuristic for inventory routing problem in industrial gases ”, Computers & Chemical Engineering, Vol. 80, No. 2, (2015), 199-210. 17.   Mirzaei, S., and  Seifi, A., “ Considering lost sale in inventory routing problems for perishable goods”, Computers & Industrial Engineering, Vol. 87, (2015), 213-227. 18.   Soysal, M., and  Bloemhof-Ruwaard. J. M., and  Haijema, R., and Jack. G. A .J., and  Vorst, V. D., “Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty”, International Journal of Production Economics, Vol.164, (2015), 118-133. 19.  Shaabani. H., and Kamalabadi. N. I., “An efficient population-based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem”,  Computers & Industrial Engineering, Vol.99, (2016), 189-201. 20. Ghare, P. M., and Schrader, G. H., “A model for anexponentially decaying inventory”, Journal of Industrial Engineering, Vpl. 14, (1963),  238-243. 21. Shah, Y. K., and Jaiswal, M. C., “An order-level inventorymodel for a system with constant rate of deterioration”, Opsearch, Vol. 14, (1977), 174-184. 22.   Aggarwal, S. P., “A note on an order-level model for asystem with constant rate of deterioration” , Opsearch, Vol. 15, (1978), 184-187. 23.   Covert. R. P., and  Philip. G. C., “An EOQ model for items with weibull distribution deterioration”, AIIE Transaction, Vol. 5, (1973),  323-326. 24.   Eilon. S., and  Mallaya. R.V.; “Issuing and pricing policy of semi perishable”, in Proceedings of the 4th International Conference on Operational Research, Wiley-Interscience, New York, NY, USA, (1966). 25. Cohen. M. A., “Joint pricing and ordering policy for exponentially decaying inventory with known demand”, Naval Research Logistics Quarterly, Vol. 24, (1977), 257- 268. 26.  Wee. H. A., “Joint pricing and replenishment policy for deteriorating inventory with declining market”, International Journal of Production Economics, Vol. 40, (1995),  257-268. 27. Yang. C. Te.,  and Quyang. L. Y., and  Han. H. WU., “Retailers optimal pricing and ordering policies for Noninstantaneous deteriorating items with price-dependent demand and partial backlogging”, Mathematical Problems in Engineering, (2009). 28    Mo. J., and Mi. F., and Zhou. F., and Pan. H., “A note on an EOQ model with stock and price sensitive demand”, Mathematical and computer Modeling, Vol. 49,  (2009), 2029-2036. 29.   Tsu. P. H., and Chung. Y. d., and Liang. Y. O., “Optimal lot size for an item with partial backlogging rate when demand is stimulated by inventory above a certain stock level”, Mathematical and Computer Modeling, Vol. 51, (2010),  13-32. 30.   Geetha. K.V., and  Uthayakumar. R., “Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments”, Journal of Computational and Applied Mathematics,  Vol. 223,  (2010),  2492-2505. 31.   Maihami, R., and  Nakhai, K. I., “Joint pricing and inventory control for non- instantaneous deteriorating items with partial backlogging and time and price dependent demand”,  International Journal of Production Economics, Vol. 136, No. 1, (2012), 116-122. 32.  Khanlarzade, N., and  Nakahi, I., and  Farughi, H., and  Yegane, Y. B., “ Determining the optimal pricing and inventory control policy for non-instantaneous deteriorating items with time-dependent deterioration rate”, in 10th international industrial engineering conference in Iran, 2014. 33.  Zhang, J., and  Bai,  B., and Tang, W., “ Optimal pricing ploicy for deteriorating items with preservation technology investment”, journal of industrial and management optimization, Vol.10, No. 4, (2014), 1261-1277. 34.  Qin, Y., and  Wang, J., and  Wei, C., “ Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously”,  Int. J. Production Economics, Vol. 152, (2014), 42–48. 35.    Rabbani,  M.,  and  Pourmohammad Zia,  N.,  and  Rafiei,  H., “ Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration”, Applied Mathematics and Computation,Vol. 287–288, (2016), 149–160.  36.    Lin,  D. Y., and Wu,  M.  H., “Pricing and inventory problem in shrimp supply chain: A case study of Taiwan's white shrimp industry ”,  Aquaculture, (2016),  456, 24–35. 37.   Hassanvand,  H.,  and  Sohrabi,  M.  S., “A Genetic Algorithm Method for the Inventory Routing and Optimal Pricing in a Two-Echelon Supply Chain with Demand Function”,  World Applied Sciences Journal, Vol. 23, No. 9, (2013), 1269-1273. 38.    Nachiappan, S., and  Jawahar, N., “Pricing in Supply Chain under Vendor Managed Inventory Supply Chain ,Theory and Applications”, Book edited by: Vedran Kordic, I-Tech Education and Publishing, Vienna, AustriaISBN 978-3-902613-22-6, 558-572, (2008). 39.    Hemmelmayr, V., and  Doerner, K. F., and  Hartl, R. F., and  Savelsbergh, M. W. P., “Delivery strategies for blood products supplies”, OR Spectrum, Vol. 31, No. 4, (2009), 707–725. 40.    Le, T., and  Diabat, A., and  Richard, J.-P., and Yih, Y., “A column generation-based heuristic algorithm  for an inventory routing problem with perishable goods”, Optimization Letters, (2012), 1–22. 41.  Boudia, M., and Prins, C., “A Memetic Algorithm with Dynamic Population Management for an Integrated Production-Distribution Problem”, European Journal of Operational Research, Vol. 195, No. 3, (2009), 703-715

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir