IJE TRANSACTIONS B: Applications Vol. 31, No. 5 (May 2018) 546-555    Article in Press

PDF URL: http://www.ije.ir/Vol31/No5/B/6.pdf  
downloaded Downloaded: 0   viewed Viewed: 9

C. Z. Che Hasan, R. Jailani and N. Md Tahir
( Received: August 05, 2016 – Accepted in Revised Form: February 16, 2018 )

Abstract    The characteristics of vertical ground reaction force (VGRF) gait patterns in children with autism spectrum disorder (ASD) are poorly understood. The purpose of this study was to identify VGRF gait features that discriminate between children with ASD and the peer control group. The VGRF data were obtained from 24 children with ASD and 24 normal healthy children aged 4 to 12 years. A three-dimensional motion analysis system with eight cameras and two force plates were used to collect VGRF data while subjects performed self-selected speed barefoot walking. Parameterisation techniques were applied to VGRF waveforms to extract the VGRF gait features. Mean significant differences between the two groups were tested using independent samples t-tests and Mann-Whitney U tests. Significant group differences were found for three VGRF gait features. Results indicate that children with ASD exhibit reduced second peak VGRF values, lower push-off rates and higher peak ratios during normal walking. These prominent changes showed that children with ASD had difficulties to support their body weight in terminal stance phase and this condition reflects the gait instability. The finding of this study develop the understanding of VGRF gait patterns that were significantly differentiate between children with ASD and the peer control groups.


Keywords    ground reaction force (GRF), autism spectrum disorder (ASD), vertical ground reaction force, gait analysis, gait pattern


چکیده    ویژگی نیروی واکنش عمودی از زمین و یا بیماری قلبی نوزادان درک ناقصی داشته که هدف این مقاله تشخیص نوزادان بیمارASD با مقایسه با گروه کنترل است. داده های بدست آمده از 30 نوزاد مبتلا . 30 نوزاد سالم در سنین 4 الی 12 سال مقایسه گردید. جهت جمع آوری داده ها با 8 دوربین و 2 صفحه نیرو برای بررسی حرکت سه بعدی با پاه برهنه راه رفتن مورد بررسی قرار گرفت. با روش تعیین پارامترها حرکت موجی بررسی می شود. میانگین اختلاف بین دو گروه بروش آزمون های تی و یو بطور مستقل بررسی خواهند شد. اختلاف فاحشی برا ی چهار ویژه گیVGRF مشخص گردید.نتایج نشان میدهد که نوزادان مبتلا بهASD کاهش قابل ملاحظه ای در ظاهر شدن زود رس پیک دوم بطور ضعیف VGRF مشاهده گردید. همچنین نسبت بیشتری با دو پیک VGRF در طول راه رفتن با سرعت عادی داشته است. اختلاف مشهودی بین نوزادان سالم و نوزادان مبتلا بهASD برای نگهداری وزن بدن در طول مسیر پیاده روی و ناپایداری آنها ملاحظه گردید. نتایج مطالعات منجر به درک VGRF گردید. اختلاف قابل ملاحظه ای بین گروه نوزاذان مبتلا به ASD با گروه سالم مشاهده گردید.

References    1.   Perry, J., “Gait analysis: normal and pathological function”, USA, SLACK Incorporated, (1992). 2.   Safartoobi, M., Dardel, M., Ghasemi, M. H. and Mohammadi Daniali, H. R., “Stabilization and walking control for a simple passive walker using computed torque method”, International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 11, (2014), 1777-1786. 3.   Whittle, M. W., “Gait Analysis: An Introduction”, 4th ed., Butterworth-Heinemann, USA, (2007). 4.   Davis, R. B., “Clinical gait analysis”, IEEE Engineering in Medicine and Biology Magazine”, (1988), 389-406. 5.   Chester, V. L., Biden, E. N. and Tingley, M., “Gait analysis”, Management & Technology, (2005), 64-74. 6.   Van der Krogt, M. M., Sloot, L. H., Buizer, A. I. and Harlaar, J., “Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy”, Journal of Biomechanics, Vol. 48, No. 13, (2015), 3577-3583. 7.   Williams, S. E., Gibbs, S., Meadows, C. B. and Abboud, R. J., “Classification of the reduced vertical component of the ground reaction force in late stance in cerebral palsy gait”, Gait and Posture, Vol. 34, No. 3, (2011), 370-373. 8.   Alaqtash, M., Sarkodie-Gyan, T., Yu, H., Fuentes, O., Brower, R. and Abdelgawad, A., “Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms”, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA, (Aug. 30-Sept. 3, 2011), 2011. 9.   Manap, H. H. and Tahir, N. M., “Detection of Parkinson gait pattern based on vertical ground reaction force”, IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, (Nov. 29-Dec. 1, 2013), 2013. 10.   Muniz, A. M. S. and Nadal, J., “Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait”, Gait and Posture, Vol. 29, No. 1, (2009), 31-35. 11.   McCrory, J. L., White, S. C. and Lifeso, R. M., “Vertical ground reaction forces: objective measures of gait following hip arthroplasty”, Gait and Posture, Vol. 14, No. 2, (2011), 104-109. 12.   McCrory, J. L., Chambers, A. J., Daftary, A. and Redfern, M. S., “Ground reaction forces during gait in pregnant fallers and non-fallers”, Gait and Posture, Vol. 34, No. 4, (2011), 524-528. 13.   Hollman, J. H., Brey, R. H., Bang, T. J. and Kaufman, K. R., “Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces”, Gait and Posture, Vol. 26, No. 2, (2007), 289-294. 14.   Miripour Fard, B., Bagheri, A. and Khoskbijari, A. S., “Receding horizon based control of disturbed upright balance with consideration of foot tilting”, International Journal of Engineering, Transactions A: Basics, Vol. 26, No. 10, (2013), 1243-1254. 15.   Weiss, M. J., Moran, M. F., Parker, M. E. and Foley, J. T., “Gait analysis of teenagers and young adults diagnosed with autism and severe verbal communication disorders”, Frontiers in Integrative Neuroscience”, Vol. 7, (2013), 33. 16.   Hallett, M., Lebiedowska, M. K., Thomas, S. L., Stanhope, S. J., Denckla, M. B. and Rumsey, J., “Locomotion of autistic adults”, Archives of Neurology, Vol. 50, No. 12, (1993), 1304-1308. 17.   Calhoun, M., Longworth, M. and Chester, V. L., “Gait patterns in children with autism”, Clinical Biomechanics, Vol. 26, No. 2, (2011), 200-206. 18.   Ambrosini, D., Courchesne, E. and Kaufman, K., “Motion analysis of patients with infantile autism”, Gait and Posture, Vol. 7, No. 2, (1998), 188. 19.   Kadaba, M. P., Ramakrishnan, H. K. and Wootten, M. E., “Measurement of Lower Extremity Kinematics During Level Walking”, Journal of Orthopaedic Research, Vol. 8, No. 3, (1990), 383-392. 20.   Davis, R. B., Ounpuu, S., Tyburski, D. and Gage, J. R., “A gait analysis data collection and reduction technique”, Human Movement Science”, Vol. 10, No. 5, (1991), 575-587. 21.   Thompson, M. A., Lee, S. S., Seegmiller, J. and McGowan, C.P., “Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners”, Gait and Posture, Vol. 41, No. 4, (2015), 957-959. 22.   Woltring, H. J., “A Fortran package for generalized, cross-validatory spline smoothing and differentiation”, Advances in Engineering Software, Vol. 8, No. 2, (1986), 104-113. 23.   Massaad, A., Assi, A., Skalli, W. and Ghanem, I., “Repeatability and validation of Gait Deviation Index in children: Typically developing and cerebral palsy”, Gait and Posture, Vol. 39, No. 1, (2014), 354-358. 24.   Dixon, P. C., Bowtell, M. V. and Stebbins, J., “The use of regression and normalisation for the comparison of spatio-temporal gait data in children,” Gait and Posture, Vol. 40, No. 4, (2014), 521–525. 25.   Chester, V. L. and Calhoun, M., “Gait symmetry in children with Autism”, Autism Research and Treatment, Vol. 2012, (2012). 26.   Stansfield, B. W., Hillman, S. J., Hazlewood, M. E., Lawson, A. M., Mann, A. M., Loudon, I. R. and Robb, J. E., “Normalisation of gait data in children”, Gait and Posture, Vol. 17, No. 1, (2003), 81-87. 27.   White, R., Agouris, I., Selbie, R. D. and Kirkpatrick, M., “The variability of force platform data in normal and cerebral palsy”, Clinical Biomechanics, Vol. 14, No. 3, (1999), 185-192. 28.   Molloy, M., Salazar-Torres, J., Kerr, C., McDowell, B. C. and Cosgrove, A. P., “The effects of industry standard averaging and filtering techniques in kinematic gait analysis”, Gait and Posture, Vol. 28, No. 4, (2008), 559-562. 29.   Su, B. L., Song, R., Guo, L. Y. and Yen, C. W., “Characterizing gait asymmetry via frequency sub-band components of the ground reaction force”, Biomedical Signal Processing and Control, Vol. 18, (2015), 56-60. 30.   Greer, N. L., Hamill, J. and Campbell, K. R., “Dynamics of children’s gait”, Human Movement Science, Vol. 8, No. 5, (1989), 465-480. 31.   Manap, H. H., Tahir, N. M. and Yassin, A. I. M., “Statistical analysis of Parkinson disease gait classification using artificial neural network”, IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, (Dec. 14-17, 2011), 2011. 32.   Allison, K., Wrigley, T. V., Vicenzino, B., Bennell, K. L., Grimaldi, A. and Hodges, P. W., “Kinematics and kinetics during walking in individuals with gluteal tendinopathy”, Clinical Biomechanics, Vol. 32, (2016), 56-63. 33.   Mayers, A., “Introduction to Statistics and SPSS in Psychology”, Pearson Education, England, (2013). 34.   Pallant, J., “SPSS Survival Manual”, Allen & Unwin, Australia, (2011). 35.   Faul, F., Erdfelder, E., Lang, A.-G. and Buchner, A., “G*Power 3 : A flexible statistical power analysis program for the social, behavioral, and biomedical sciences”, Behavior Research Methods, Vol. 39, No. 2, (2007), 175-191.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir