IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 315-321   

PDF URL: http://www.ije.ir/Vol31/No2/B/16-2694.pdf  
downloaded Downloaded: 141   viewed Viewed: 1020

A. Gharehkhani and E. Abbaspour-Sani
( Received: June 11, 2017 – Accepted in Revised Form: December 21, 2017 )

Abstract    In this paper a new design for 6 bit DMTL phase shifter with only 32 MEMS switches is proposed. The reduction in number of switches in ordinary 6 bit phase shifter from 63 to 32 is due to combination of one 5.625 degree for least significant bit and 11.25 degree for the rest of the switches. Decreasing the number of the switches reduces the die-size as well as loss of the CPW line. Analytical study and simulation with HFSS and COMSOL software is carried out for the proposed structure. Maximum return loss of phase shifter is -10.5 dB and mean RMS phase error is 1.4o . Although two different structural switches are used but the pull in voltages are identical. The total structure size is 1.5*18.5 mm2 , and surface micromachining process is proposed for the phase shifter.


Keywords    MEMS, shunt capacitive switch, DMT phase shifter, actuation voltage


چکیده    در این مقاله ما ساختاری جدید از یک شیفت دهنده فاز شش بیتی DMTL ارائه می دهیم که فقط 32 سوئیچ MEMS در آن به کار رفته است. کاهش تعداد سوئیچ های شیفت دهنده فاز شش بیتی از 63 به 32، با توجه به ترکیبی از یک سوئیچ متفاوت در بیت اول جهت شیفت فاز 5.625 درجه و 31 سوئیچ همسان دیگر با قابلیت شیفت فازهای 11.25 درجه برای دیگر بیت ها، صورت می پذیرد. کاهش تعداد سوئیچ ها سبب کاهش اندازه شیفت دهنده فاز و در نتیجه کاهش تلفات خط CPW می شود. با استفاده از نرم افزارهای COMSOL و HFSS ، مطالعه تحلیلی و شبیه سازی ساختار پیشنهادی صورت گرفته است. بر اساس نتایج، ماکزیمم تلفات بازگشتی شیفت دهنده فاز-10.5 dB و میانگین خطای RMS برابر 1.4 درجه است. با وجود داشتن دو نوع سوئیچ با ساختار متفاوت، ولتاژ عملگر برای تمامی سوئیچ ها یکسان است. اندازه کلی ساختار 18.5*1.5 میلیمتر مربع بوده و پروسه میکروماشین کاری سطحی برای شیفت دهنده فاز ارائه شده پیشنهاد شده است.


1.      Hansen, R.C., "Phased array antennas, John Wiley & Sons,  Vol. 213,  (2009).

2.      Ren, H., "Design and application of phased array system, University of North Texas,  (2013).

3.      Rebeiz, G.M., "Rf mems: Theory, design, and technology, John Wiley & Sons,  (2004).

4.      Dey, S. and Koul, S.K., "1035-ghz frequency reconfigurable rf mems 5-bit dmtl phase shifter uses push-pull actuation based toggle mechanism", in Microwave and RF Conference (IMaRC), 2014 IEEE International, IEEE., (2014), 21-24.

5.      Ganji, B. and Razeghi, A., "A new design of dual band phase shifter using mems technology",  International Journal of Engineering Transactions B: Applications, Vol. 26, No. 11, (2013), 1337-1346.

6.      Afrang, S., Samandari, K. and Rezazadeh, G., "A small size k a band six-bit dmtl phase shifter using new design of mems switch", Microsystem Technologies,  Vol. 23, No. 6, (2017), 1853-1866.

7.      Maury, F., Pothier, A., Orlianges, J.-C., Mardivirin, D., Reveyrand, T., Conseil, F. and Blondy, P., "Ku band dmtl medium power phase shifters", in Microwave Symposium Digest, 2009. MTT'09. IEEE MTT-S International, (2009), 1153-1156.

8.      Muldavin, J.B. and Rebeiz, G.M., "High isolation cpw mems shunt switches part 1: Modeling", IEEE Transactions on Microwave Theory and Techniques,  (1999), 1-8.

9.      Sharma, P., Koul, S.K. and Chandra, S., "Studies on rf mems shunt switch", Indian Journal of pure & Applied physics, Vol. 45, (2007), 387-394.

10.    Hayden, J.S., Malczewski, A., Kleber, J., Goldsmith, C.L. and Rebeiz, G.M., "2 and 4-bit dc-18 ghz microstrip mems distributed phase shifters", in Microwave Symposium Digest, 2001 IEEE MTT-S International, IEEE. Vol. 1, (2001), 219-222.

11.    Puri, M., Das, A. and Sengar, J.S., "A novel design of monolithically integrated phased array antenna employing 4-bit dmtl phase shifter", in Wireless and Optical Communications Networks (WOCN), 2013 Tenth International Conference on, IEEE., (2013), 1-6.

12.    Dey, S. and Koul, S.K., "Reliability analysis of ku-band 5-bit phase shifters using mems sp4t and spdt switches", IEEE Transactions on Microwave Theory and Techniques,  Vol. 63, No. 12, (2015), 3997-4012.

13.    Hayden, J.S. and Rebeiz, G.M., "Very low-loss distributed x-band and ka-band mems phase shifters using metal-air-metal capacitors", IEEE Transactions on Microwave Theory and Techniques,  Vol. 51, No. 1, (2003), 309-314.

14.    Liu, Y., Borgioli, A., Nagra, A.S. and York, R.A., "K-band 3-bit low-loss distributed mems phase shifter", IEEE Microwave and Guided Wave Letters,  Vol. 10, No. 10, (2000), 415-417.

15.    Sugesh, M.S. and Nataraj, B., "Design and modeling of rf mems phase shifters using various structures of coplanar waveguides", International Research Journal of Engineering and Technology,  Vol. 2, (2015), 2106-2112.

16.    Kundu, A., Gupta, B., Saha, H., Sarkar, B.K. and Lahiri, S.K., "Rf mems dmtl phase shifter on low-resistivity silicon for ku band with reduced substrate loss", in TENCON 2010-2010 IEEE Region 10 Conference, IEEE., (2010), 957-962.

17.    Chen, A., Jiang, W., Chen, Z. and Li, Y., "A low-loss ka-band distributed metal-air-metal mems phase shifter", Przegląd Elektrotechniczny,  Vol. 7, No., (2013), 77-80.

18.    Topalli, K., Civi, .A., Demir, S., Koc, S. and Akin, T., "A monolithic phased array using 3-bit distributed rf mems phase shifters", IEEE Transactions on Microwave Theory and Techniques,  Vol. 56, No. 2, (2008), 270-277.

19.    Yaghoubi, J. and Ganji, B.A., "Radio frequency-micro electromechanical system switch with high speed and low actuated voltage", International Journal of Engineering Transactions A: Basics,  Vol. 29, No. 10, (2016), 1380-1383.

20.    Devi, T.R., Maity, S. and Datta, A., "A novel design of 4-bit distributed mems transmission line (dmtl) phase shifter using an rf shunt capacitive mems switch for phased array antenna", in Convergence of Technology (I2CT), 2014 International Conference for, IEEE., (2014), 1-6.

21.             Dey, S. and Koul, S.K., "Design, development and characterization of an x-band 5 bit dmtl phase shifter using an inline mems bridge and mam capacitors", Journal of Micromechanics and Microengineering,  Vol. 24, No. 9, (2014), 095007. DOI: 10.1088/0960-1317/24/9/095007

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir