IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 249-255    Article in Press

PDF URL: http://www.ije.ir/Vol31/No2/B/8.pdf  
downloaded Downloaded: 0   viewed Viewed: 92

S. Valiollahi and G. Ardeshir
( Received: March 04, 2017 – Accepted: October 12, 2017 )

Abstract    A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating voltages using a heuristic optimization algorithm. The obtained results demonstrate only 1.28% and 0.97% average error in IBM 0.13um CMOS technology for NMOS and PMOS, respectively, comparing with the accurate physically-based BSIM3 model. Furthermore, the tolerance of the model accuracy against parameters variation is investigated.


Keywords    deep submicron, heuristic optimization, MOSFET modeling, nth-power law model, short channel effects, sub-threshold current


چکیده    مدل جریان-ولتاژ همه منظوره ساده­ای برای تمامی نواحی کاری ترانزیستورهای ماسفت زیرمیکرون عمیق ارائه می­شود. با در نظر گرفتن موثرترین اثرات کانال کوتاه در قالب معادلاتی ساده شامل تعداد کمی پارامتر اضافی، مصالحه­ای منطقی میان سادگی و دقت یافته است. جهت بهبود بیشتر دقت، پارامترهای مدل روی عرض­های کانال مختلف و محدوده کامل ولتاژهای کاری با استفاده از الگوریتم بهینه­سازی ابتکاری بهینه شده­اند. نتایج به دست آمده تنها خطای متوسط 1.28% و 0.97% را در تکنولوژی IBM 0.13um CMOS به ترتیب برای NMOS و PMOS، در مقایسه با مدل فیزیکی دقیق BSIM3 نشان می­دهند. به علاوه، انحراف دقت مدل نسبت به تغییرات پارامتر بررسی شده­ است.

References    1.             Bucher, M., et al., "The EPFL-EKV model equations for eimulation", Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland (1998). 2.             Cheng, Y. and Hu, C., "MOSFET modeling & BSIM3 user’s guide", Kluwer Academic Publishers, (2002). 3.             Qi, Z. and Stan, M.R., "Accurate back-of-the-envelope transistor model for deep sub-micron MOS", in IEEE International Conference on Microelectronic Systems Education (MSE'07). 2007, San Diego, California, (2007). 4.             Sakurai, T. and Newton, A.R., "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas", IEEE Journal of Solid-State Circuits, Vol. 25, No. 2, (1990), 584-594 5.             Sakurai, T. and A.R. Newton, "A simple MOSFET model for circuit analysis", IEEE Transactions on Electronic Devices, Vol. 38, No. 4, (1991), 887-894 6.             Keller, S., Harris, D.M., and Martin, A.J., "A compact transregional model for digital CMOS circuits operating near threshold", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 22, No. 10, (2014), 2041-2053. 7.             Sharifi, M.J. and Adibi, A., "Semiconductor device simulation by a new method of solving poisson, laplace, and shrodinger equations", International Journal of Engineering (IJE), Vol. 13, No. 1, (2000), 89-94. 8.             HSPICE® Reference, Manual: MOSFET Models, (2010). 9.             Hamoui, A., "Current, Delay, and Power Analysis of Sublllicron CMOS Circuits", in Department of Electrical and Computer Engineering, McGill University, Montréal, (1998). 10.           Taherzadeh-Sani, M., et al., "MOS compact I-V modeling with variable accuracy based on genetic algorithm and simulated annealing", in 16th International Conference on Microelectronics (ICM 2004), (2004). 11.           Fino, M.H., "A simple submicron MOSFET model and its application to the analytical characterization of analog circuits", in European Conference on Circuit Theory and Design, (2005). 12.           Abbasian, A., et al., "Modeling of MOS transistors based on genetic algorithm and simulated annealing", in IEEE International Symposium on Circuits and Systems, (2005). 13.           Singh, A.K., Samanta, J., and Bhaumik, J., "Modified I-V model for delay analysis of UDSM CMOS circuits", in International Conference on Communications, Devices and Intelligent Systems (CODIS), (2012). 14.           Consoli, E., Giustolisi, G., and Palumbo, G., "An accurate ultra-compact I-V model for nanometer MOS transistors with applications on digital circuits", IEEE Transactions on Circuits and Systems-I: Regular Papers, Vol. 59, No. 1, (2012), 159-169. 15.           Karaboga, N., "An idea based on honey bee swarm for numerical optimization", Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey, (2005). 16.           Valiollahi, S., Ghaderi, R., and Ebrahimzadeh, A., "A Q-learning based continuous tuning of fuzzy wall tracking without exploration", International Journal of Engineering (IJE) Transactions A: Basics, Vol. 25, No. 4, (2012), 355-366. 17.           Guo, Z., Wang, S., Yue, X., Jiang, D., and Li, K., "Elite opposition-based artificial bee colony algorithm for global optimization", International Journal of Engineering (IJE) Transactions C: Aspects, Vol. 28, No. 9, (2015), 1268-1275. 18.           Tsividis, Y., "Operation and modeling of the MOS transistor", McGraw-Hill. (1999). 19.           Langevelde, R.V. and Klaassen, F.M.,"Accurate drain conductance modeling for distortion analysis in MOSFETs", in IEDM Technical Digest, (1997). 20.           Comer, D.J. and Comer, D.T., "Operation of analog MOS circuits in the weak or moderate inversion region", IEEE Transactions on Education, Vol. 47, No. 4, (2004), 430-435. 21.           Gupta, K.A., Anvekar, D.K., and Venkateswarlu, V., "Modeling of short channel MOSFET devices and analysis of design aspects for power optimisation", International Journal of Modeling and Optimization, Vol. 3, No. 3, (2013), 266-271.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir