Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 212-219    Article in Press

PDF URL: http://www.ije.ir/Vol31/No2/B/4.pdf  
downloaded Downloaded: 0   viewed Viewed: 116

  WAVE ENERGY DISSIPATION USING PERFORATED AND NON PERFORATED PILES
 
M. Feizbahr, K. K. Choong, F. Rostami and M. Shahrokhi
 
( Received: July 06, 2017 – Accepted: October 12, 2017 )
 
 

Abstract    The indispensable vital structure in any harbor is a breakwater in order to make available calm water region inshore. Pile breakwater can be employed as a small coastal protection structure where tranquility required is low. This study is concerned with CFD study on the performance of perforated hollow pile to dissipate wave energy and the novelty of this investigation is the role of perforation layout in dissipating energy of water. Pile models under two different incident waves with constant water depth and wave amplitude have been classified into two groups with two different wavelengths, making a total of 10 models which has been simulated numerically by computational flow solver FLOW 3D. The analytical results of simulations show changes in the velocity profiles after piles while dissipation happened in the vicinity of the pile. The result implied the perforated models can perform better than the non-perforated ones and energy dissipation was found much more significant in perforated piles.

 

Keywords    breakwater, perforation, hollow piles, Flow 3D, wave modeling, coastal-protection

 

References    Koraim, A., “Suggested model for the protection of shores and marina” , Zagazig University, Zagazig, Egypt, (2005).Ji, C. H. and Suh, K. D., “Wave interactions with multiple-row curtainwall-pile breakwaters”, Coastal Engineering, Vol. 57, No. 5, (2010), 500-512.Zhu, D., “Hydrodynamic characteristics of a single-row pile breakwater”, Coastal Engineering,  Vol. 58, (2011), 446-451.Suh, K. D., Shin, S. and Cox, D. T., “Hydrodynamic characteristics of pile-supported vertical wall breakwaters”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 132, (2006),  83-96.Hutchinson, P. S. and Raudkivi, A. J., “Case history of a spaced pile breakwater at Halfmoon Bay Marina, Auckland, New-Zealand”, in 19th Coastal Engineering Conference: Houston, Texas., (1984).Christou, M., Swan, C. and Gudmestad, O. T., “The interaction of surface water waves with submerged breakwaters”, Coastal Engineering, Vol. 55, (2008), 945-958.Hayashi, T., Kano, T. and Shirai, M., “Hydraulic research on the closely spaced pile breakwater”, ASCE (1966).Kakuno, S. and Philip, L. F., “Scattering of water waves by vertical cylinders”, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 119, (1993), 302-322.Suh, K. D., Jung, H. Y. and Pyun, C. K., “Wave reflection and transmission by curtainwall-pile breakwaters using circular piles”, Ocean Engineering, Vol. 34, (2007), 2100-2106. Jarlan G., “A perforated vertical wall breakwater”, The Dock and Harbour Authority, Vol. 41,(1961), 394–398.Tsai, C. P., Chen, H. B. and Lee, F. C., “Wave transformation over submerged permeable breakwater on porous bottom”, Ocean Engineering, Vol. 33, (2006), 1623-1643. Liu, Y., Li, Y. c. and Teng, B., “Wave interaction with a perforated wall breakwater with a submerged horizontal porous plate”, Ocean Engineering, Vol. 34, (2007),  2364-2373.Nikoo, M. R., Varjavand, I., Kerachian, R., Pirooz, M. D. and Karimi, A., “Multi-objective optimumA design of double-layer perforated-wall breakwaters: Application of NSGA-II and bargaining models”, Applied Ocean Research,  Vol. 47, (2014),  47-52.Mirbagheri, S., Rajaee, T. and Mirzaee, F., “Solution of wave equations near seawalls by finite element method”, International Journal of Engineering Transactions A Basics, Vol. 21, No. 1, (2008), 1-16.Rao S., Rao, N. B. S. and Sathyanarayana, V. S., “Laboratory investigation on wave transmission through two rows of perforated hollow piles”, Ocean Engineering,  Vol. 26, (1999),  677-701.Rostami, F., Shahrokhi, M., Md Said, M. A. and Abdullah, R. S., “Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks”, Applied Mathematical Modelling, Vol. 35, (2011), 3012-3020.Rostami, F., Shahrokhi, M., Md Saod, M. A. and Sabbagh Yazdi, S. R., “Numerical simulation of undular hydraulic jump on smooth bed using volume of fluid method”, Applied Mathematical Modelling, Vol. 37, (2013), 1514-1522.Yaakob, O. B., Tawi, K. and Sunanto, D. S., “Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine”, International Journal of Engineering Transactions A Basics, Vol. 23, (2010), 79-88.Cavaleri, L., Alves, J. H. G. M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J. and Herbers, T., “Wave modelling–the state of the art”, Progress in Oceanography,  Vol. 75, (2007), 603-674.Launder, B. and Spalding, D., “Lectures in mathematical models of turbulence”, Academic Press, London, England , (1972).Vincent, C. L. and Briggs, M. J., “Refraction-diffraction of irregular waves over a mound”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 115, (1989), 269-284. 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir