IJE TRANSACTIONS A: Basics Vol. 31, No. 4 (April 2018) 533-537    Article in Press

PDF URL: http://www.ije.ir/Vol31/No4/A/3-2732.pdf  
downloaded Downloaded: 57   viewed Viewed: 382

H. Harahap, R. Nawansyah, H. Nasution, Taslim and Iriany
( Received: August 22, 2017 – Accepted in Revised Form: November 30, 2017 )

Abstract    Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose nanocrystal was characterized by Fourier Transform Infra Red (FTIR) and showed that the absorption peak indicated the presence of cellulose clusters was obtained from corncob and cellulose nanocrystal has many similarities and there was no new bond formation. Cellulose nanocrystal particle size was observed by Transmission Electron Microscopy (TEM) and the result showed the size of cellulose nanocrystal was 9-29 nm. Crystallinity index of cellulose nanocrystal from corncob determined by X-Ray Diffraction (XRD) was 70%. This showed the atomic structure of cellulose nanocrystal quite regular so obtained a high crystallinity index.


Keywords    Cellulose Nanocrystal; Corncob; Crystallinity Index; Delignification; Hydrolysis



تفاله ذرت یکی از ضایعات صنعتی است که حاوی 39 درصد سلولز است، ماده اولیه مناسبی برای تولید نانوکریستال سلولز محسوب می شود. تفاله ذرت با استفاده از محلول 5/3 درصد وزنی اسید نیتریک و 10 میلی گرم نتریت سدیم و محلول سود 5/17 درصد لیگنین زدائی شده است سپس با محلول اب اکسیژنه 10 درصد وزنی سفید شده است. نانوکریستال سلولز با هیدرولیز اسید سولفوریک 45 درصد انجام شده است. مشخصات تفاله ذرت و نانوکریستال سلولز با استفاده از FTIR تعیین گردید. طیف های جذب بدست آمده نشان داده است که توده های سلولز از تفاله ذرت با نانوکریستال سلولزتشابه مطلوبی داشته است و پیوند جدید تشکیل نشده است. اندازه ذرات نانوکریستال سلولز توسط TEM مشاهده گردید در محدوده 29-9 نانومتر بوده است. اندیس و درجه کریستالی نانوکریستال سلولزاز تفاله ذرت با استفاده از اشعه ایکس و XRD بمیزان 70 درصد تعیین گردید. این نتایج نشان میدهد که ساختار اتمی نانوکریستال سلولز کاملا متعارف بوده که از اندیس کریستالی مطلوبی برخوردار است.


1.     Pointner, M., Kuttner, P., Obrlik, T., Jager, A. and Kahr, H., "Composition of corncobs as a substrate for fermentation of biofuels", Agronomy Research,  Vol. 12, No. 2, (2014), 391-396.

2.     Ashour, A., Amer, M., Marzouk, A., Shimizu, K., Kondo, R. and El-Sharkawy, S., "Corncobs as a potential source of functional chemicals", Molecules,  Vol. 18, No. 11, (2013), 13823-13830.

3.     Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D. and Dorris, A., "Nanocelluloses: A new family of nature‐based materials", Angewandte Chemie International Edition,  Vol. 50, No. 24, (2011), 5438-5466.

4.     Peng, B.L., Dhar, N., Liu, H. and Tam, K., "Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective", The Canadian Journal of Chemical Engineering,  Vol. 89, No. 5, (2011), 1191-1206.

5.     Jonoobi, M., Mathew, A.P. and Oksman, K., "Producing low-cost cellulose nanofiber from sludge as new source of raw materials", Industrial Crops and Products,  Vol. 40, (2012), 232-238.

6.     Leo, A.L., Cherian, B.M., de Souza, S.F., Sain, M., Narine, S., Caldeira, M.S. and Toledo, M.A.S., "Use of primary sludge from pulp and paper mills for nanocomposites", Molecular Crystals and Liquid Crystals,  Vol. 556, No. 1, (2012), 254-263.

7.     Meng, Y., Wu, Q., Young, T.M., Huang, B., Wang, S. and Li, Y., "Analyzing three‐dimensional structure and geometrical shape of individual cellulose nanocrystal from switchgrass", Polymer Composites,  Vol. 38, No. 11, (2017), 2368-2377.

8.     Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y. and Sheltami, R.M., "Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers", Cellulose,  Vol. 19, No. 3, (2012), 855-866.

9.     Liu, D., Chen, X., Yue, Y., Chen, M. and Wu, Q., "Structure and rheology of nanocrystalline cellulose", Carbohydrate Polymers,  Vol. 84, No. 1, (2011), 316-322.

10.   Morais, J.P.S., de Freitas Rosa, M., Nascimento, L.D., do Nascimento, D.M. and Cassales, A.R., "Extraction and characterization of nanocellulose structures from raw cotton linter", Carbohydrate Polymers,  Vol. 91, No. 1, (2013), 229-235.

11.   de Morais Teixeira, E., Corra, A.C., Manzoli, A., de Lima Leite, F., de Oliveira, C.R. and Mattoso, L.H.C., "Cellulose nanofibers from white and naturally colored cotton fibers", Cellulose,  Vol. 17, No. 3, (2010), 595-606.











12.   Orue, A., Santamaria‐Echart, A., Eceiza, A., Pea‐Rodriguez, C. and Arbelaiz, A., "Office waste paper as cellulose nanocrystal source", Journal of Applied Polymer Science,  Vol. 134, No. 35, (2017).

13.   Mariano, M., Chirat, C., El Kissi, N. and Dufresne, A., "Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly (butylene adipate‐co‐terephthalate)", Journal of Polymer Science Part B: Polymer Physics,  Vol. 54, No. 22, (2016), 2284-2297.

14.   Harahap, H., Lubis, M. and Hayat, N., "Sukardi, effect of aging process on elongation at break and morphology of natural rubber latex film filled with nanocrystalline cellulose and alkanolamide", International Journal of Material Science,  (2016), 97-102.

15.   Fortunati, E., Puglia, D., Monti, M., Santulli, C., Maniruzzaman, M. and Kenny, J., "Cellulose nanocrystals extracted from okra fibers in pva nanocomposites", Journal of Applied Polymer Science,  Vol. 128, No. 5, (2013), 3220-3230.

16.   Agustin, M.B., Ahmmad, B., Alonzo, S.M.M. and Patriana, F.M., "Bioplastic based on starch and cellulose nanocrystals from rice straw", Journal of Reinforced Plastics and Composites,  Vol. 33, No. 24, (2014), 2205-2213.

17.   Aulia, F., "Studi penyediaan nanokristal selulosa dari tandan kosong sawit (TKS)", Saintia Kimia,  Vol. 1, No. 2, (2013).

18.   Sain, M. and Panthapulakkal, S., "Bioprocess preparation of wheat straw fibers and their characterization", Industrial Crops and Products,  Vol. 23, No. 1, (2006), 1-8.

19.   Lubis, M., Harahap, M.B., Ginting, M.H.S., Sartika, M. and Azmi, H., "Effect of microcrystalline cellulose (MCC) from sugar palm fibres and glycerol addition on mechanical properties of bioplastic from avocado seed starch (persea americana mill)",  (2016), 1-10.

20.   Abdassah, M., "Nanopartikel dengan gelasi ionik", Farmaka,  Vol. 15, No. 1, (2017).

21.   Xiang, Q., Lee, Y., Pettersson, P.O. and Torget, R.W., Heterogeneous aspects of acid hydrolysis of α-cellulose, in Biotechnology for fuels and chemicals. (2003), Springer.505-514.

22.   Chang, P.R., Jian, R., Yu, J. and Ma, X., "Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites", Food Chemistry,  Vol. 120, No. 3, (2010), 736-740.

23.   Harahap, H., Hayat, N. and Lubis, M., "Preparation and application of nanocrystalline cellulose derived from sugarcane waste as filler modified alkanolamide on crosslink of natural rubber latex film", in AIP Conference Proceedings, AIP Publishing. Vol. 1865, (2017), 040012.

24.   Sugondo and Badruzzaman, M., "Karakterisasi kristalinitas bahan kristalin dengan difraksi sinar x", Prosiding Seminar Nasional Hamburan Neutron dan Sinar X Ke 2,  Vol. 2, (1999), 1410-7686.

25.   Segal, L., Creely, J., Martin Jr, A. and Conrad, C., "An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer", Textile Research Journal,  Vol. 29, No. 10, (1959), 786-794.

26.   Lu, H., Gui, Y., Zheng, L. and Liu, X., "Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue", Food Research International,  Vol. 50, No. 1, (2013), 121-128.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir