IJE TRANSACTIONS A: Basics Vol. 31, No. 1 (January 2018) 61-68    Article in Press

PDF URL: http://www.ije.ir/Vol31/No1/A/9.pdf  
downloaded Downloaded: 0   viewed Viewed: 51

D. Bensahal and A. Yousfi
( Received: September 27, 2017 – Accepted: November 30, 2017 )

Abstract    The aim of this study is to show the effect of the volume flow rate of the heat transfer fluid (air) on the thermal parameters of the solar air collector with a single air pass without using fins under the absorbing plate have been investigated experimentally and theoretically . We use a new design of solar air collector which aims to optimize these parameters in the region cited above. Our solar air collector was realized at the mechanical workshop at the University of Laghouat, Algeria. We chose five different volume flow rates for five different days. This study shows the evolution of the thermal parameters of the solar air collector as function of the local solar time (Lst) such as: absorber temperature, temperature of the bottom plate, outlet temperature, ambient temperature, solar irradiation intensity and efficiency for a tilt angle of solar collector equal 36.7o. We observe a good agreement between the values obtained theoretically and those obtained experimentally except for the volume flow rates 3 and 4 (partial sky condition). When the volume flow rate increases, the outlet temperature of the solar collector also increases.


Keywords    Volume Flow Rate, Solar Air Collector, Temperature, Efficiency


References      1.    Richter, C., Lincot, D., Gueymard, C.A., "Solar energy", New york, Springer, (2013). 2.     Garg, H. P., Adhikari, R. S., “Performance evaluation of a single solar air heater with n-subcollectors connected in different”, International Journal of Energy Research,  Vol. 23, No. 5, (1999), 403-414. 3.    Belusko, M., Saman, W., Bruno, F., “Performance of jet impingement in unglazed air collectors”, Solar Energy,  Vol. 82, No. 5, (2008), 389-398. 4.     Duffie, J., Beckman, W., " Solar engineering of thermal processes", New York, 2th Edn. Wiley, (1991). 5.     Koyuncu, T., “Performance of various design of solar air heaters for crop drying applications”, Renewable Energy,  Vol. 31, No. 7, (2006), 1073-1088. 6.   Ratti, C., Mujumdar, A.S., “Solar Drying of Foods: Modelling and Numerical Simulation”, Solar Energy,  Vol. 60, No. 3-4, (1997), 151-157. 7.   Khamforoush, M., Mirfatah, S.M., and Hatami, T., “Application of three types of dryers namely tunnel, fluidized bed, and fluidized bed with microwave for drying of celery, corn, and sour cherry: experiments and modeling”, International Journal of Engineering, Transaction B: Applications,  Vol. 27, No. 5, (2014), 667-674. 8.    Yeh, H.M., Lin, T.T., “The effect of collector aspect ratio on the collector efficiency of flat-plate solar air heaters”, Energy,  Vol. 20, No. 10, (1995), 1041-1047. 9.     Chabane, F., Moummi, N., Bensahal, D., Brima, A., “Heat transfer coefficient and thermal losses of solar collector and Nusselt number correlation for rectangular solar air heater duct with longitudinal fins hold under the absorber plate”, Applied Solar Energy,  Vol. 50, No. 1, (2014), 19-26. 10.    Ghasemi, S. E., Hatami, M., Ganji, D. D., “Analytical thermal analysis of air-heating solar collectors”, Journal of Mechanical Science and Technology,  Vol. 27, No. 11, (2013), 3525-3530. 11.    Mc Adams, W. H., 2nd Edn. Dunod, (1961). 12.     Moummi. N., Moummi. A., Abed. B., Hachemi, A., le Ray, M., National Energy Conference, Neptur, Roumani, (1995). 13.     Idliman, A., “Étude théorique d’un système de séchage des peaux de cuirs pour la région de Marrakech, constitué d’une serre agricole jouant le rôle d’un générateur Solaire d’air chaud et d’un séchoir conventionnel”, Thesis third cycle, National School of Marrakech, Morocco, (1990). 14.    Kays, W.M., Crawfod, M. E.," Convective heat and mass transfer ". 3rd Edn. McGraw-Hill Science/Engineering/Math, (1993). 15.    Kasaeiana, A.B., Dehghani Mobarakehb, M., Golzaria, S., Akhlaghia, M.M., “Energy  and  Exergy   Analysis  of  Air  PV/T  Collector  of  Forced  Convection  with  and without Glass Cover”, International Journal of Engineering, Transaction B: Applications,  Vol. 26, No. 8, (2013), 913-926. 16.  Ajay, K., Kundan,L.,“Performance  Evaluation  of  Nanofluid  (Al2O3/H2O-C2H6O2)  Based  Parabolic  Solar Collector Using Both Experimental and CFD Techniques”, International Journal of Engineering, Transaction A: Basics,  Vol. 29, No. 4, (2016), 572-580. 17.    Sabri, Y., Desmons, J. Y., “Simulation of a new concept of an indirect solar dryer equipped with offset rectangular plate fin absorber-plate”, International Journal of energy research,  Vol. 29, (2005), 317-334. 18.  Klein, S.A., Beckman, W. A., “A general design method for closed-loop solar energy systems”, Solar Energy,  Vol. 22, (1979). 19.           Goudarzi, K., Asadi Yousef-abad, S.K., Shojaeizadeh, E, Hajipour, A., “Experimental investigation of thermal performance in an advanced solar collector with helical tube”, International Journal of Engineering, Transaction A: Basics,  Vol. 27, No. 7, (2014), 1149-1154.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir