IJE TRANSACTIONS A: Basics Vol. 31, No. 1 (January 2018) 31-38    Article in Press

PDF URL: http://www.ije.ir/Vol31/No1/A/5.pdf  
downloaded Downloaded: 0   viewed Viewed: 71

S. Najafi, S. Dowlati, G. Rezazadeh and S. Azizi
( Received: October 24, 2017 – Accepted: December 21, 2017 )

Abstract    The thermo-elastic damping is a significant dissipation mechanism in high quality factor microstructures. In this paper, thermo-elastic damping of the in-plane vibration of fully clamped rectangular micro-plates has been studied. The governing equation of the micro-plate motion and heat conduction equation were derived. Then, The Galerkin method has been used to solve the coupled heat-displacement equations. Eventually, considering the micro-plate of various materials, the effects of geometrical parameters including the length and width of micro-plate and also ambient temperature on the thermo-elastic damping quality factor have been investigated.


Keywords    In-plane vibration, Thermo-elastic damping, Quality factor, rectangular micro-plate.


References    1. Nayfeh, Ali H., and Mohammad I. Younis. "Modeling and simulations of thermoelastic damping in microplates." Journal of Micromechanics and Microengineering 14, no. 12 (2004): 1711. 2. Zener, Clarence. "Internal friction in solids. I. Theory of internal friction in reeds." Physical review 52, no. 3 (1937): 230. 3. Zener, Clarence. "Internal friction in solids II. General theory of thermoelastic internal friction." Physical Review 53, no. 1 (1938): 90. 4. Duwel, Amy, John Gorman, Marcie Weinstein, Jeff Borenstein, and Paul Ward. "Experimental study of thermoelastic damping in MEMS gyros." Sensors and Actuators A: Physical 103, no. 1 (2003): 70-75. 5. Evoy, Stephane, Anatoli Olkhovets, Dustin W. Carr, Jeevak M. Parpia, and Harold G. Craighead. "Temperature-dependent internal friction in silicon nanoelectromechanical systems." MRS Online Proceedings Library Archive 657 (2000). 6. Lifshitz, Ron, and Michael L. Roukes. "Thermoelastic damping in micro-and nanomechanical systems." Physical review B 61, no. 8 (2000): 5600. 7. Sun, Yuxin, and Hironori Tohmyoh. "Thermoelastic damping of the axisymmetric vibration of circular plate resonators." Journal of sound and vibration 319, no. 1 (2009): 392-405. 8. Sharma, J. N., and R. Sharma. "Damping in micro-scale generalized thermoelastic circular plate resonators." Ultrasonics 51, no. 3 (2011): 352-358. 9. Najafi, M., G. Rezazadeh, and R. Shabani. "Thermo-elastic damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory." Journal of Solid Mechanics Vol 4, no. 4 (2012): 386-401. 10. Yasumura, Kevin Y., Timothy D. Stowe, Eugene M. Chow, Timothy Pfafman, Thomas W. Kenny, Barry C. Stipe, and Daniel Rugar. "Quality factors in micron-and submicron-thick cantilevers." Journal of microelectromechanical systems 9, no. 1 (2000): 117-125. 11. Hagood, Nesbitt W., and Andreas von Flotow. "Damping of structural vibrations with piezoelectric materials and passive electrical networks." Journal of Sound and Vibration 146, no. 2 (1991): 243-268. 12. Khanchehgardan, A., A. Shah-Mohammadi-Azar, G. Rezazadeh, and R. Shabani. "Thermo-elastic damping in nano-beam resonators based on nonlocal theory." International Journal of Engineering-Transactions C: Aspects 26, no. 12 (2013): 1505-1513. 13. Gorman, D. J. (2005). Free in-plane vibration analysis of rectangular plates with elastic support normal to the boundaries. Journal of sound and vibration, 285(4), 941-966. 14. Wang, Gang, and Norman M. Wereley. "Free in-plane vibration of rectangular plates." AIAA journal 40, no. 5 (2002): 953-959. 15. Bardell, N. S., R. S. Langley, and J. M. Dunsdon. "On the free in-plane vibration of isotropic rectangular plates." (1996): 459-467. 16. Seok, Jongwon, H. F. Tiersten, and H. A. Scarton. "Free vibrations of rectangular cantilever plates. Part 1: out-of-plane motion." Journal of Sound and Vibration 271, no. 1 (2004): 131-146. 17. Gorman, D. J. "Accurate analytical type solutions for the free in-plane vibration of clamped and simply supported rectangular plates." Journal of sound and vibration 276, no. 1 (2004): 311-333. 18. Gorman, D. J. "Accurate in-plane free vibration analysis of rectangular orthotropic plates." Journal of Sound and Vibration 323, no. 1 (2009): 426-443. 19. Gorman, D. J. "Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported." Journal of Sound and Vibration 294, no. 1 (2006): 131-161. 20. Andrianov, Igor V., Jan Awrejcewicz, and Vladimir Chernetskyy. "Analysis of natural in-plane vibration of rectangular plates using homotopy perturbation approach." Mathematical Problems in Engineering 2006 (2006). 21. Hyde, K., J. Y. Chang, C. Bacca, and J. A. Wickert. "Parameter studies for plane stress in-plane vibration of rectangular plates." Journal of Sound and Vibration 247, no. 3 (2001): 471-487. 22. Timoshenko, Stephen P., and Sergius Woinowsky-Krieger. Theory of plates and shells. McGraw-hill, 1959. 23. Chandrasekharaiah D, Debnath L., Continuum mechanics. Academic press New York, 1994. 24. Sadd, Martin H. Elasticity: theory, applications, and numerics. Academic Press, 2009. 25. Mase, G. Thomas, Ronald E. Smelser, and George E. Mase. Continuum mechanics for engineers. CRC press, 2009. 26. Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G. and Shabani, R., "Mechanical response of a iezoelectrically sandwiched nano-beam based on the nonlocal theory", International Journal of Engineering-ransactions C: Aspects, Vol. 26, No. 12, (2013), 1515-1524. 27. Mobki, H., M. Sadeghian, and G. Rezazadeh. "Design of direct exponential observers for fault detection of nonlinear MEMS tunable capacitor." IJE Transactions A: Basics 28, no. 4 (2015): 634-641. 28. Saeedivahdat, Armin, Fatemeh Abdolkarimzadeh, Ashkan Feyzi, Ghader Rezazadeh, and Saeed Tarverdilo. "Effect of thermal stresses on stability and frequency response of a capacitive microphone." Microelectronics Journal 41, no. 12 (2010): 865-873. 29. Zamanian, M., and S. E. Khadem. "Analysis of thermoelastic damping in microresonators by considering the stretching effect." International Journal of Mechanical Sciences 52, no. 10 (2010): 1366-1375. 30. Dozio, Lorenzo. "Free in-plane vibration analysis of rectangular plates with arbitrary elastic boundaries." Mechanics Research Communications 37, no. 7 (2010): 627-635. 31. Du, J., Li, W.L., Jin, G., Yang, T., Liu, Z., 2007. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges. J. Sound Vib. 306, 908–927.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir