IJE TRANSACTIONS C: Aspects Vol. 30, No. 12 (December 2017) 1497-1506    Article in Press

PDF URL: http://www.ije.ir/Vol30/No12/C/9.pdf  
downloaded Downloaded: 0   viewed Viewed: 64

Behrokh A. Abbasnjad, R. Shabani and G. Rezazadeh
( Received: March 24, 2017 – Accepted: September 08, 2017 )

Abstract    This paper investigates the parametric excitation of a micro-pipe conveying fluid suspended between two symmetric electrodes. Electrostatically actuated micro-pipes may become unstable when the exciting voltage is greater than the pull-in value. It is demonstrated that the parametric excitation of a micro-pipe by periodic (ac) voltages may have a stabilizing effect and permit an increase of the steady (dc) component of the actuation voltage beyond the pull-in value. Mathieu type equation of the system is obtained by applying Taylor series expansion and Galerkin method to the nonlinear partial differential equation of motion. Floquet theory is used to extract the transition curves and stability margins in physical parameters space (Vdc-Vac). In addition, the stability margins are plotted in flow velocity and excitation amplitude space (u-Vac space). The results depict that the micro-pipe remains stable even if the flow velocity is more than the critical value for a certain dc voltage. The obtained results are verified by numerical analysis of the system subjected to nonlinear electrostatic forces.


Keywords    Electrostatically actuated micro-beam, Micro-pipe conveying fluid, Dynamics, Pull-in instability, Parametric oscillation, Floquet theory


چکیده    در این مقاله، پایداری یک میکرولوله حامل سیال در شرایط تحریک پارامتریک مورد بررسی قرار گرفته است. که این میکرولوله حامل سیال به صورت متقارن در بین دو الکترود از نوع تحریک الکتروستاتیک قرار دارد. این میکرولوله که تحت تحریک الکتروستاتیک قرار دارد، در شرایطی که ولتاژ تحریک بزرگتر از ولتاژ ناپایداری استاتیکی باشد، ناپایدار میگردد. با اضافه کردن ولتاژ متناوب به ولتاژ ثابت و با به کاربردن سری تیلور و روش گلرکین، معادله حاکم بر سیستم که به فرم معادله ماتیو میباشد، استخراج شده است. با استفاده از تئوری فلوکه و با تغییر پارامترهاي تحریک سیستم نظیر اندازه ولتاژ ثابت و دامنه ولتاژ تناوبی منحنی هاي گذر و نواحی پایدار میکرولوله مشخص شده اند. بعلاوه منحنی های گذر و نواحی پایدار با تغییر سرعت سیال و دامنه ولتاژ هارمونیک نیز به دست آمده اند. . نتا یج نشان میدهند که با افزودن یک مولفه هارمونیک میتوان ولتاژ ناپایداري سیستم را افزایش داده و به مقدار بالاتر از ناپایداري استاتیکی نیز رساند. نتایج به دست آمده براي نقاط خاص به صورت عددي نیز حل شده و پایداري سیستم به صورت موردي بررسی شده است.

References    [1]        Ho, C.M., & Tai, Y.C. (1998). Micro-electro-mechanical-systems and fluid flows. Annual Review Fluid Mechanics, 30, 579–612.                      [2]        Sheybani, R., Gensler, H. and Meng, E. (2013). A MEMS electrochemical bellows actuator for fluid metering applications. Biomedical Microdevices, 15, 37–48.                      [3]        Rinaldi, S., Prabhakar, S., Vengallatore, S. and Paidoussis, M.P. (2010). Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. Journal of sound and vibration, 329, 1081–1088.                      [4]        Laser, D.J., & Santiago, J.G. (2004). A review of micropumps. Journal of Micromechanics and Microengineering, 14, 35–64.                      [5]        Sheikhlou, M., Shabani, R., Rezazadeh, G. (2015). Nonlinear analysis of electrostatically actuated diaphragm- type micropumps. Nonlinear Dynamics, 83(1), 951-961.                   [6]        Païdoussis, M.P. Fluid-structure interactions: slender structures and axial flow. Academic press, Vol. 1, London, 1998.                      [7]        Gregory, R., & Paidoussis, M. (1966). Unstable oscillation of tubular cantilevers conveying fluid. II. Experiments. Proc. R. Soc. London, Ser. A, Mathematical and Physical Sciences, 293, 528–542.                      [8]        Benjamin, T.B. (1961). Dynamics of a system of articulated pipes conveying fluid. I. Theory. Proc. R. Soc. London, Ser. A, Mathematical and Physical Sciences, 261, 457–486.       [9]        Benjamin, T.B. (1961). Dynamics of a system of articulated pipes conveying fluid. II. Experiments. Proc. R. Soc. London, Ser. A, Mathematical and Physical Sciences, 261, 487–499.                    [10]       Whitby, M., Quirke, N.(2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2, 87-94.                    [11]       Chang, T.P. (2013). Nonlinear thermal–mechanical vibration of flow conveying double-walled carbon nanotubes subjected to random material property. Microfluid Nanofluid, 15, 219–229.                    [12]       Mattia, D., & Gogotsi, Y. (2008). Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid, 5, 289–305.                    [13]       Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2014). Carbon nanotube-based nano-fluidic devices. Journal of Physics D: Applied Physics, 47(8), 085301.                    [14]       Wang, L. (2010). Size-dependent vibration characteristics of fluid-conveying microtubes. Journal of Fluids Structures, 26, 675 –684.                    [15]       Ahangar, S., Rezazadeh, G., Shabani, R., Ahmadi, G., & Toloei, A. (2011). On the stability of a microbeam conveying fluid considering modified couple stress theory. International Journal of Mechanical Material Design, 7, 327 – 342.                    [16]       Abbasnejad, B., Shabani, R., Rezazadeh, G. (2015). Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluidics and Nanofluidics, 19(3), 577-584.       [17]       Amiri, A., Shabani, R., Rezazadeh, G. (2016).  Coupled vibrations of a magneto-electro-elastic micro diaphragm in micro-pumps, Microfluidics and Nanofluidics, 20(1)  20:18, DOI: 101007/s10404-015-1678-x                     [18]       Enoksson, P., Stemme, G., Stemme, E. (1995). Fluid density sensor based on resonance vibration. Sensors and Actuators A, 46, 327-331.                    [19]       Enoksson, P., Stemme, G., Stemme, E. (1996). Silicon tube structures for fluid-density sensor. Sensors and Actuators A, 54, 558-562.                    [20]       Enoksson, P., Stemme, G., Stemme, E. (1997). A silicon resonant sensor structure for Coriolis mass-flow measurement. Journal of Microelectromechanical systems, 6(2), 119-125.                       [21]       Westberg, D., Paul, O., Andersson, G. I., Baltes, H. (1999). A CMOS-compatible device for fluid density measurments fabricated by sacrificial aluminium etching. Sensors and Actuators, 73, 243-251.                    [22]       Najmzadeh, M., Haasl, S. and Enoksson, P. (2007). A silicon straight tube fluid density sensor. journal of micromechanics and microengineering, 17(8), 1657.                    [23]       Sparks, D., Smith, R., Cruz, V., Tran, N., Chimbayo, A., Riley, D. and Najafi, N. (2009). Dynamic and kinematic viscosity measurements with a resonating microtube. Sensors and Actuators A: Physical, 149(1), 38-41.                    [24]       Dai, H.L., Wang, L. and Ni, Q. (2015). Dynamics and pull-in instability of electrostatically actuated micro-beams conveying fluid. Microfluidics and Nanofluidics, 18(1), 49-55.         [25]       Krylov, S., Harari, I. and Cohen, Y. (2005). Stabilization of electrostatically actuated microstructures using parametric excitation. Journal of Micromechanics and Microengineering, 15(6), 1188.                    [26]       Rhoads, J.F., Shaw, S.W. and Turner, K.L. (2006). The nonlinear response of resonant micro-beam systems with purely-parametric electrostatic actuation. Journal of Micromechanics and Microengineering16(5), 890.                    [27]       Ghazavi, M. R., Rezazadeh, G., and Azizi, S., (2010). Pure parametric excitation of a micro cantilever beam actuated by piezoelectric layers. Applied Mathematical Modelling, 34, 4196-4207.  

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir