IJE TRANSACTIONS B: Applications Vol. 30, No. 11 (November 2017) 1730-1739   

PDF URL: http://www.ije.ir/Vol30/No11/B/14.pdf  
downloaded Downloaded: 20   viewed Viewed: 302

H. Rezai and O. R. B. Speily
( Received: February 09, 2017 – Accepted in Revised Form: September 08, 2017 )

Abstract    Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant cost due to high energy consumption. Data centers are provisioned to accommodate peak demand rather than average demand and cloud applications consume much more electrical energy than they need. Thus, it necessitates that cloud computing solutions not only minimize operational costs, but also reduce the power consumption. In this paper, we investigate load balancing and power saving methods in virtualized cloud infrastructures. Imbalanced distribution of workloads across resources can lead to performance degradation and much electrical power consumption in such data centers. We present an architectural framework and principles for energy-efficient cloud computing environments. Resource provisioning and allocation algorithms, named Load-Power-aware, are proposed in this architecture. The algorithm employs a heuristic to dynamically improve the energy efficiency in data center, while guarantees the Quality of Service (QoS). The efficiency of the proposed approach is evaluated by using the most common cloud computing simulation toolkit, CloudSim. The performance modeling and simulation results are depicted the proposed approach significantly improves the energy efficiency in a given dynamic scenario, while a small amount of service level agreements (SLA) is missed.


Keywords    Cloud computing, load balancing, power saving, virtualization, live migration.


چکیده    رایانش ابری، به عنوان یک رویای بلندمدت و ابزار رایانشی، این قابلیت را دارد که بخش بزرگی از صنعت فناوری اطلاعات را تغییر داده و صنعت نرم افزار را به عنوان سرویس ارائه شده جذابتر سازد و شکل طراحی و فروش سخت افزار لازم برای فناوری اطلاعات را تغییر دهد. فناوری مجازی سازی مفهوم کلیدی معماریهای جدید رایانش ابری را تشکیل میدهد. مراکز دادهای که برای ارائه سرویسهای ابری مورد استفاده قرار میگیرند، هزینه سنگینی را به خاطر مصرف انرژی بالا تحمیل میکنند و نرم افزارهای کاربردی ابری، بیش از حد مورد نیازشان انرژی الکتریکی مصرف میکنند. لذا، روشهای رایانش ابری نه تنها باید هزینههای عملیاتی را کاهش دهند، بلکه باید مصرف توان را نیز کاهش دهند. در این مقاله، روشهای تعدیل بار و صرفهجویی مصرف توان در زیرساختهای مجازیسازی شده ابری را بررسی کرده ایم. توزیع نامتعادل بارهای کاری بین منابع، منجر به کاهش بازدهی و افزایش مصرف توان الکتریکی در چنین مراکز داده می شود. ما، یک چارچوب معماری و اصولی برای محیط رایانش ابری با کارآیی انرژی بالا ارائه کرده ایم. الگوریتم فراهم سازی و تخصیص منابع، که Load-Power-aware نامگذاری شده، در این معماری پیشنهاد شده است. این الگوریتم، در ضمن حفظ کیفیت سرویس، یک روش ابتکاری پویا را که مصرف انرژی را بهبود میبخشد، به کار می برد. کارآیی روش ارائه شده با ابزار شبیهسازی رایانش ابری، CloudSim ارزیابی شده است. نتایج مدل سازی و شبیه سازی کارآیی، نشان میدهند که روش ارائه شده کارآیی مصرف توان را به صورت قابل توجهی بهبود میبخشد در حالی که مقدار ناچیزی از توافق سطح ارائه سرویس از بین می رود.


1.      Jeyanthi, N., Shabeeb, H., Durai, M.S. and Thandeeswaran, R., "Rescue: Reputation based service for cloud user environment", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 8, (2014), 1179-1186.

2.      Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I., "Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility", Future Generation Computer Systems,  Vol. 25, No. 6, (2009), 599-616.

3.      Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I. and Warfield, A., "Xen and the art of virtualization", in ACM SIGOPS operating systems review, ACM. Vol. 37, (2003), 164-177.

4.      Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I. and Warfield, A., "Live migration of virtual machines", in Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-Volume 2, USENIX Association., (2005), 273-286.

5.      Smith, J. and Nair, R., "Virtual machines: Versatile platforms for systems and processes, Elsevier,  (2005).

6.      Devine, S.W., Bugnion, E. and Rosenblum, M., "Virtualization system including a virtual machine monitor for a computer with a segmented architecture". (2002), Google Patents.

7.      Khan, Z., Singh, R., Alam, J. and Kumar, R., "Performance analysis of dynamic load balancing techniques for parallel and distributed systems", International Journal of Computer and Network Security,  Vol. 2, No. 2, (2010), 123-127.

8.      Alakeel, A.M., "A guide to dynamic load balancing in distributed computer systems", International Journal of Computer Science and Information Security,  Vol. 10, No. 6, (2010), 153-160.

9.      Singh, A., Korupolu, M. and Mohapatra, D., "Server-storage virtualization: Integration and load balancing in data centers", in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press., (2008), 53-60.

10.    Sharma, E., Singh, S. and Sharma, M., "M.: Performance analysis of load balancing algorithms", in In: 38th World Academy of Science, Engineering and Technology, Citeseer., (2008).

11.    Tang, X. and Chanson, S.T., "Optimizing static job scheduling in a network of heterogeneous computers", in Parallel Processing, 2000. Proceedings. 2000 International Conference on, IEEE., (2000), 373-382.

12.    Motwani, R. and Raghavan, P., "Randomized algorithms", ACM Computing Surveys (CSUR),  Vol. 28, No. 1, (1996), 33-37.

13.    Karimi, A., Zarafshan, F., Jantan, A., Ramli, A.R. and Saripan, M., "A new fuzzy approach for dynamic load balancing algorithm", arXiv preprint arXiv:0910.0317,  (2009).

14.    Zeng, Z. and Veeravalli, B., "Rate-based and queue-based dynamic load balancing algorithms in distributed systems", in Parallel and Distributed Systems, 2004. ICPADS 2004. Proceedings. Tenth International Conference on, IEEE., (2004), 349-356.

15.    Rouholamini, M. and Mohammadian, M., "Grid-price-dependent energy management of a building supplied by a multisource system integrated with hydrogen", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 1, (2016), 40-49.

16.    Taghizadeh, S. and Mohammadi, S., "Lebrp-a lightweight and energy balancing routing protocol for energy-constrained wireless AD HOC networks", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 1, (2013), 33-40.

17.    Greenberg, A., Hamilton, J., Maltz, D.A. and Patel, P., "The cost of a cloud: Research problems in data center networks", ACM SIGCOMM computer Communication Review,  Vol. 39, No. 1, (2008), 68-73.

18.    Fan, X., Weber, W.-D. and Barroso, L.A., "Power provisioning for a warehouse-sized computer", in ACM SIGARCH Computer Architecture News, ACM. Vol. 35, (2007), 13-23.

19.    Gartner, I., Gartner says energy-related costs account for approximately 12 percent of overall data center expenditures. (2010), Tech. Rep.

20.    Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S. and Scott, M.L., "Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling", in High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on, IEEE., (2002), 29-40.

21.    Urgaonkar, R., Kozat, U.C., Igarashi, K. and Neely, M.J., "Dynamic resource allocation and power management in virtualized data centers", in Network Operations and Management Symposium (NOMS), 2010 IEEE, (2010), 479-486.

22.    Introduction to vmware infrastructure: Esx server 3.5, esx server 3i version 3.5, virtualcenter 2.5. (2007), Revision.

23.    Buyya, R., Ranjan, R. and Calheiros, R.N., "Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: Challenges and opportunities", in High Performance Computing & Simulation, 2009. HPCS'09. International Conference on, IEEE., (2009), 1-11.

24.    Zuo, L., Shu, L., Dong, S., Zhu, C. and Zhou, Z., "Dynamically weighted load evaluation method based on self-adaptive threshold in cloud computing", Mobile Networks and Applications,  Vol. 22, No. 1, (2017), 4-18.

25.    Radhakrishnan, A. and Kavitha, V., "Energy conservation in cloud data centers by minimizing virtual machines migration through artificial neural network", Computing,  Vol. 98, No. 11, (2016), 1185-1202.

26.    Shen, Y., Bao, Z., Qin, X. and Shen, J., "Adaptive task scheduling strategy in cloud: When energy consumption meets performance guarantee", World Wide Web,  Vol. 20, No. 2, (2017), 155-173.

27.    Nathuji, R. and Schwan, K., "Virtualpower: Coordinated power management in virtualized enterprise systems", in ACM SIGOPS Operating Systems Review, ACM. Vol. 41, (2007), 265-278.

28.    Verma, A., Ahuja, P. and Neogi, A., "Pmapper: Power and migration cost aware application placement in virtualized systems", in Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Springer-Verlag New York, Inc. (2008), 243-264.

29.             Beloglazov, A., Abawajy, J. and Buyya, R., "Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing", Future Generation Computer Systems,  Vol. 28, No. 5, (2012), 755-768.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir