Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 32, No. 5 (May 2019) 790-793   

PDF URL: http://www.ije.ir/Vol32/No5/B/21-3092.pdf  
downloaded Downloaded: 8   viewed Viewed: 48

  INVESTIGATION OF THERMAL OPERATIONAL REGIMES FOR DIAMOND BIT DRILLING OPERATIONS (TECHNICAL NOTE)
 
V. G. Gorelikov, Y. V. Lykov, L. K. Gorshkov and A. M. Uspechov
 
( Received: January 22, 2019 – Accepted in Revised Form: March 07, 2019 )
 
 

Abstract    This paper reviews existing studies and investigates thermal operational regimes of diamond bit during drilling operations. The operating temperature of the diamond core drill is studied under bench condition and an optimal thermal range are presented. Based on this study, it was noted that glazing of diamond tools is observed at temperatures less than 327C, and normal wear of diamond tools is observed at temperatures within the range of 327- 660C. Burning-in of diamond cores is accompanied by heating the matrix to temperatures above 800C.

 

Keywords    Diamond Core Drill; Matrix; Fusible Inserts; Rock; Polishing

 

چکیده   

این مقاله به بررسی مطالعات و یافته های علمی موجود می پردازد و همچنین رژیم های گرمایی در عملیات حفاری با استفاده از مته های الماسی را مورد بررسی قرار می دهد. دمای عملیاتی مته های حفاری در شرایط واقعی مورد بررسی قرار گرفتند و در نتیجه ی این بررسی بازه ی دماهای بهینه ارائه شده اند. نتایج نشان میدهند که صیقلی شدن الماس ها در ابزارهای مورد استفاده در دمای کمتر ازC 327 اتفاق می افتد، و همچنین حالت معمولی الماس ها در بازه ی دمایی C 327- C660 مشاهده شده است. همچنین داده ها نشان می دهند که سوختن کامل هسته ی الماس زمانی رخ میدهد که دمای ماتریکس به بالای C 800 برسد.

References   

1. Bernt, S.A., Cooper, I., Miska, S., Mitchell, R. and Payne, M., "Advanced drilling and well technology", Society of Petroleum Engineers,  ISBN978-1-55563-145-1,  (2009).
2. Balykov, A. and Tsesarskii, A., "Diamond drilling of parts made of hard nonmetal materials", Mashinostroenie, Moscow,  (1980).
3. EVans, A.G. and Charles, E.A., "Fracture toughness determinations by indentation", Journal of the American Ceramic society,  Vol. 59, No. 7‐8, (1976), 371-372.
4. Xu, J., An, Q., Cai, X. and Chen, M., "Drilling machinability evaluation on new developed high-strength t800s/250f cfrp laminates", International Journal of Precision Engineering and Manufacturing,  Vol. 14, No. 10, (2013), 1687-1696.
5. Huang, S. and Wang, Z., "The mechanics of diamond core drilling of rocks", International Journal of Rock Mechanics and Mining Sciences,  Vol. 34, No. 3-4, (1997), 134. e131-134. e114.
6. Lykov, Y., Gorelikov, V. and Gantulga, B., "Analytical research and classification of mechanism of diamond drilling-bits contact with rocks during well sinking", in IOP Conference Series: Earth and Environmental Science, IOP Publishing. Vol. 87, (2017), 022012.
7. Dvoynikov, M., Syzrantsevb, V. and Syzrantsevab, K., "Designing a high resistant, high-torque downhole drilling motor", International Journal of Engineering,  Vol. 30, No. 10, (2017), 1615-1621.
8. Ishikawa, K.-i., Suwabe, H., Nishide, T. and Uneda, M., "A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials", Precision Engineering,  Vol. 22, No. 4, (1998), 196-205.
9. Momeni, M., Ridha, S., Hosseini, S., Liu, X., Atashnezhad, A. and Ghaheri, S., "Optimum drill bit selection by using bit images and mathematical investigation", International Journal of Engineering, Transactions B: Applications,  Vol. 30, No. 11, (2017), 1807-1813.
10. Liu, D., Tang, Y. and Cong, W., "A review of mechanical drilling for composite laminates", Composite Structures,  Vol. 94, No. 4, (2012), 1265-1279.
11. Yagishita, H., "Comparing drilling and circular milling for hole making in bi-layer composite materials consisting of carbon fiber reinforced plastic (CFRP) laminates and titanium alloys, Society of Manufacturing Engineers,  (2008).
12. Balykov, A., "Modeling of diamond drilling of holes in brittle nonmetallic solid materials", Glass and Ceramics,  Vol. 60, No. 3-4, (2003), 77-80.
13. Zhang, Q., Zhang, J., Sun, D. and Wang, G., "Study on the diamond tool drilling of engineering ceramics", Journal of Materials Processing Technology,  Vol. 122, No. 2-3, (2002), 232-236.
14. Garrick, R., Drilling advanced aircraft structures with pcd (poly-crystalline diamond) drills. 2007, SAE Technical Paper.
15. Montoya, M., Calamaz, M., Gehin, D. and Girot, F., "Evaluation of the performance of coated and uncoated carbide tools in drilling thick cfrp/aluminium alloy stacks", The International Journal of Advanced Manufacturing Technology,  Vol. 68, No. 9-12, (2013), 2111-2120.
16. Ramulu, M., Branson, T. and Kim, D., "A study on the drilling of composite and titanium stacks", Composite Structures,  Vol. 54, No. 1, (2001), 67-77.
17. Brinksmeier, E., Fangmann, S. and Rentsch, R., "Drilling of composites and resulting surface integrity", CIRP Annals,  Vol. 60, No. 1, (2011), 57-60.
18. Wang, X., Kwon, P.Y., Sturtevant, C. and Lantrip, J., "Tool wear of coated drills in drilling cfrp", Journal of Manufacturing Processes,  Vol. 15, No. 1, (2013), 127-135.
19. Le Coz, G., Marinescu, M., Devillez, A., Dudzinski, D. and Velnom, L., "Measuring temperature of rotating cutting tools: Application to mql drilling and dry milling of aerospace alloys", Applied Thermal Engineering,  Vol. 36, (2012), 434-441.
20. Shi, Z. and Malkin, S., "Wear of electroplated cbn grinding wheels", Journal of Manufacturing Science and Engineering,  Vol. 128, No. 1, (2006), 110-118.
21. Choi, Y.-J. and Chung, S.-C., "Monitoring of micro-drill wear by using the machine vision system", Transactions of the Korean Society of Mechanical Engineers A,  Vol. 30, No. 6, (2006), 713-721. 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir