Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 32, No. 5 (May 2019) 710-719   

PDF URL: http://www.ije.ir/Vol32/No5/B/13-3074.pdf  
downloaded Downloaded: 23   viewed Viewed: 60

  A TEMPERATURE COMPENSATION VOLTAGE CONTROLLED OSCILLATOR USING A COMPLEMENTARY TO ABSOLUTE TEMPERATURE VOLTAGE REFERENCE
 
M. Katebi, A. Nasri, S. Toofan and H. Zolfkhani
 
( Received: September 21, 2018 – Accepted in Revised Form: May 02, 2019 )
 
 

Abstract    This paper presents a temperature compensation voltage controlled oscillator (VCO) based on Cross-Coupled pair and Colpitts structures which is suitable for military fields. Also, two inductors have been used for increasing the negative conductance. By using this method, start-up condition has been improved. Two varactors and a simple capacitor bank are applied for covering a wide tunning range. The VCO has been designed and simulated in TSMC 0.18 µm CMOS technology.To compensate the frequency drift over a temperature range, MOS varactors are used and biased with a complementary to absolute temperature (CTAT) voltage reference. This CTAT voltage reference has been applied to two varactors and decreased the frequncy drift over temperature range. By using this technique, the proposed VCO can achieve a very stable frequency of 11.5 PPM/°C at 24.35 GHz over a temperature range of -40~120 °C. Simulation results also show the VCO covers the frequency range of 23.75~24.8 GHz. The simulated phase noise of center frequency is -102.6 dBc/Hz at 1 MHz offset frequency. The VCO consumes 10.4 mW DC power under 1.8 V supply voltage. The figure of merit of the VCO is -179.8 after compensating.

 

Keywords    Colpitts; Complementary to Absolute Temperature; Cross-coupled Pair; Temperature Compensation; Voltage Controlled Oscillator

 

چکیده   

در این مقاله یک نوسان‌ساز کنترل شونده با ولتاژ همراه با جبرانسازی حرارتی بر پایه نوسان‌سازهای کولپیتس و زوج ضربدری ارائه می‌شود. با استفاده از این ساختارها، می‌توان به نویز فاز بهتر و توان مصرفی کمتر دست پیدا کرد. این مدار در فناوری 18/0 سی‌ماس طراحی و شبیه‌سازی شده است. برای جبرانسازی حرارتی از یک جفت خازن متغیر، که به وسیله یک منبع ولتاژ CTAT تغذیه می‌شوند، استفاده شده است. این منبع به دو خازن ورکتور اعمال می‌شود و باعث پایدار شدن فرکانس در گستره دمایی بالایی می‌شود. شبیه‌سازی نشان می‌دهد که با استفاده از این روش در گستره دمایی 40- الی 120 درجه سلسيوس، ضریب تغییرات 5/11 قسمت در میلیون بر درجه سلسيوس (PPM/C) در فرکانس مرکزی 35/24 گیگاهرتز به دست می‌آید. با توجه به نتایج گستره فرکانسی پوشش داده شده توسط این نوسان‌ساز کنترل شونده با ولتاژ از 75/23 گیگاهرتز الی 8/24 گیگاهرتز می‌باشد. همچنین توان مصرفی و نویز فاز در فرکانس مرکزی و در آفست 1 مگاهرتز، 4/10 میلی‌وات و dBc/Hz 6/102- می‌باشند. مدار طراحی شده داری ضریب شایستگی dBc/Hz 8/179- می‌باشد

References   

1. Loke, A. L. S., et. Al. “A Versatile 90 nm CMOS Charge Pump PLL for SerDes Transmitter Clocking,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 8, (2006), 1894-1907.
2. Seifi, S. et. Al. “Analysis of Oscillation Amplitude and Phase Error in Multiphase LC Oscillators,” International Journal of Engineering, Transactions C: Aspects Vol. 26, No. 6 ,(2013) 587-596.
3. Nematzadeh, K. et. Al. “A New Method of CMOS Ring Oscillator Analysis,” International Journal of Engineering, Transactions A: Basics Vol. 28, No. 1 (January 2015) 60-65.
4. M. Katebi, et. Al. “A Wide Tuning Range and Low Phase Noise VCO using New Capacitor Bank Structure”, Majlesi Journal of Electrical Engineering, Vol. 12, No. 4 (February 2018) 95-103.
5. M. Katebi, et. Al. "Low-power VCO for K-band Applications," Electrical Engineering (ICEE), Iranian Conference on, Mashhad, 2018, 144-149, (2018).
6. Akima, H., et. Al. “A 10 GHz Frequency Drift Temperature Compensation LC VCO with Fast-Settling Low-Noise Voltage Regulator in 0.13 µm CMOS,” in 23th IEEE Custom Integrated Circuits Conference 2010, USA, 1-4, (2010).
7. Karri, S. R., et. Al. “Temperature Compensated VCO design for Multi-band WCDMA Transceiver Application,” in 3rd IEEE International Symposium on Radio-Frequency Integration Technology 2009, Singapore, (2009) 191-194. 
8. Wu, G., et. Al. “A Low-Voltage And Temperature Compensated Ring VCO Design,” in 10th Circuits and Systems Conference, (2014).
9. Wang, Y., et. Al. “A Temperature-Compensated LC Oscillator Using Constant-Biased Varactors,” IEEE Microwave and Wireless Components Letters, (2015) 130-132.
10. Ting, Y., Ming, Z. Y., Liang,  L. H., Men, Z. Y. and Yue, W., “A K-Band Low Phase Noise and Wide Tunig Range LC VCO,” IEEE 12th International Conference on Solid-State and Integrated Circuit Technology, Guilin, (2014).
11. Ravinuthula, V. and Finocchiaro, S., “A Low Power High Performance PLL with Temperature Compensated VCO in 65nm CMOS,” in 20th Radio Frequency Integrated Circuits Symposium., USA , (2016).
12. Real, J. J. and Abidi, A. A., “Physical processes of phase noise in differential LC Oscillator,” IEEE Custom Integrated Circuits Conference, Orlando, FL, (2000).
13. Razavi, B., "RF microelectronics, USA, Prentice Hall, (2011)..
14. Wang, T. P., “A CMOS Colpitts VCO Using Negative-Conductance Boosted Technology,” IEEE Transaction on Circuits and System I, Vol. 58, No. 11, (2011), 2623-2635.
15. Allen, P. E. and Holberg, D. T., "CMOS Analog Circuit Design, USA, Oxford University Press, (2011).


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir