Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 32, No. 4 (April 2019) 587-595    Article in Press

PDF URL: http://www.ije.ir/Vol32/No4/A/17-3057.pdf  
downloaded Downloaded: 19   viewed Viewed: 96

  IMPROVEMENT OF DIE CORNER FILLING OF STEPPED TUBES USING WARM HYBRID FORMING
 
A. Taheri Ahangar, M. Bakhshi-Jooybari, S. J. Hosseinipour and H. Gorji
 
( Received: December 31, 2018 – Accepted: March 07, 2019 )
 
 

Abstract    Aluminum and magnesium alloys are of materials for decreasing vehicle weight and consequently reducing fuel consumption. However, forming limitations regarding their low formability at room temperature are found when being manufactured by conventional forming processes. For this reason, development of new forming techniques, such as warm tube hydroforming, is needed to overcome such limitations. In addition, production of parts with sharp corners is nearly impossible using conventional forming processes. This paper investigates the possibility of forming stepped tubes with high expansion ratio, sharp corner radii and precise geometric shape using a developed hybrid hydroforming and bending method. To assess tube formability, the bulge test was adopted with different forming temperatures and axial feeds. It is shown that using the feed of 35 mm and feed rate of 15 mm/min, a stepped tube with 47.6 % expansion ratio and corner filling ratio of about 100 % (part with sharp corners) could be achieved when adopting the developed hybrid hydroforming and bending method at 150 ᵒC.

 

Keywords    Aluminum Alloy; Corner Filling; Stepped Tube; Tube Hydroforming; Warm Hydroforming

 

چکیده   

آلیاژهای آلومینیوم و منیزیم از موادی هستند که باعث کاهش وزن خودرو و در نتیجه کاهش مصرف سوخت میشوند. با این حال، محدودیت هایی در ارتباط با شکل پذیری پایین آنها در دمای اتاق، زمانی که توسط فرایندهای تولید متعارف تولید می شود، پیدا می شود. به همین دلیل، برای غلبه بر چنین محدودیت هایی، نیاز به توسعه تکنیک های شکلدهی جدید، از جمله هیدروفرمینگ گرم لوله است. علاوه بر این، تولید قطعات با گوشه های تیز با استفاده از فرایندهای شکل گیری معمول تقریبا غیرممکن است. در اين مقاله قصد داريم تا با استفاده ازیک روش ترکیبی هيدروفرمينگ و خمکاری ، امکان تشکيل لوله هاي پلهای با نسبت انبساط بالا، شعاع گوشه تيز و شکل هندسي دقيق را بررسي کنيم. برای بررسی شکل پذیری لوله، آزمون بالج در دماها و تغذیه محوری مختلف انجام شد. نشان داده شده است که با استفاده از تغذیه 35 میلیمتر و سرعت تغذیه 15 میلی متر بر دقیقه ، یک لوله پله با نسبت انبساط 47.6 درصد و نسبت پرشدگی حدود 100 درصد (قطعه کار با شعاع گوشه های تیز) ، در هنگام اتخاذ هیدروفرمینگ ترکیبی توسعه یافته با خمکاری در دمای C 150قابل دستیابی است.

References   

1. Lang, L., Wang, Z., Kang, D., Yuan, S., Zhang, S.-H., Danckert, J. and Nielsen, K.B.J.J.o.M.P.T., "Hydroforming highlights: Sheet hydroforming and tube hydroforming", Journal of Materials Processing Technology, Vol. 151, No. 1-3, (2004), 165-177.
2. Salahshoor, M., Gorji, A. and Bakhshi-Jooybari, M.J.I.J.o.E.-T.A.B., "Investigation of the effects of pressure path and tool parameters in hydrodynamic deep drawing", International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 7, (2014), 1155-1166.
3. Reddy, P.V., Reddy, B.V. and Rao, P.S.J.M.T.P., "A numerical study on tube hydroforming process to optimize the process parameters by taguchi method", Materials Today: Proceedings, Vol. 5, No. 11, (2018), 25376-25381.
4. Khosrojerdi, E., Bakhshi-Jooybari, M., Gorji, A. and Hosseinipour, S.J., "Experimental and numerical analysis of hydrodynamic deep drawing assisted by radial pressure at elevated temperatures", The International Journal of Advanced Manufacturing Technology, Vol. 88, No. 104, (2016), 185-195.
5. Lee, M.-Y., Sohn, S.-M., Kang, C.-Y., Suh, D.-W. and Lee, S.-Y., "Effects of pre-treatment conditions on warm hydroformability of 7075 aluminum tubes", Journal of Materials Processing Technology, Vol. 155, (2004), 1337-1343.
6. Yadav, A.D., "Process analysis and design in stamping and sheet hydroforming", The Ohio State University, (2008), 
7. Varloteaux, A., Blandin, J. and Suery, M., "Control of cavitation during superplastic forming of high strength aluminium alloys", Materials Science and Technology, Vol. 5, No. 11, (1989), 1109-1117.
8. Hosford, W.F. and Caddell, R.M., "Metal forming: Mechanics and metallurgy, Cambridge University Press, (2011).
9. Yuan, S., Qi, J. and He, Z., "An experimental investigation into the formability of hydroforming 5a02 al-tubes at elevated temperature", Journal of Materials Processing Technology, Vol. 177, No. 1-3, (2006), 680-683.
10. Kim, B., Van Tyne, C., Lee, M. and Moon, Y., "Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy", Journal of Materials Processing Technology, Vol. 187, (2007), 296-299.
11. Yi, H., Pavlina, E., Van Tyne, C. and Moon, Y., "Application of a combined heating system for the warm hydroforming of lightweight alloy tubes", Journal of Materials Processing Technology, Vol. 203, No. 1-3, (2008), 532-536.
12. Gang, L., ZHANG, W.-d., HE, Z.-b., YUAN, S.-j. and Zhe, L., "Warm hydroforming of magnesium alloy tube with large expansion ratio within non-uniform temperature field", Transactions of Nonferrous Metals Society of China, Vol. 22, (2012), s408-s415.
13. Seyedkashi, S.H., Moslemi Naeini, H., Liaghat, G., Mosavi Mashadi, M., Shojaee G, K., Mirzaali, M. and Moon, Y.H., "Experimental and numerical investigation of an adaptive simulated annealing technique in optimization of warm tube hydroforming", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 226, No. 11, (2012), 1869-1879.
14. Hashemi, S., Naeini, H.M., Liaghat, G. and Tafti, R.A., "Prediction of bulge height in warm hydroforming of aluminum tubes using ductile fracture criteria", Archives of Civil and Mechanical Engineering, Vol. 15, No. 1, (2015), 19-29.
15. Mitsui, S., Miyagawa, T., Yasui, H. and Yoshihara, S., "Warm bulge forming of small diameter a1100 aluminium tube", in Materials Science Forum, Trans Tech Publications, Vol. 920, (2018), 149-154. 
16. Elyasi, M., Bakhshi-Jooybari, M. and Gorji, A., "A new die design for the hydroforming of stepped tubes", International Journal of Material Forming, Vol. 3, No. 1, (2010), 71-75.
17. Ramberg, W. and Osgood, W.R., "Description of stress-strain curves by three parameters", NASA, Scientific and Technical Information Facility (1943). 
18. Afshar, A., Hashemi, R., Madoliat, R., Rahmatabadi, D., Hadiyan, B.J.M. and Industry, "Numerical and experimental study of bursting prediction in tube hydroforming of al 7020-t6",  Mechanics and Industry, Vol. 18, No. 4, (2017), 411.
19. Yang, L., Tao, Z. and He, Y., "Prediction of loading path for tube hydroforming with radial crushing by combining genetic algorithm and bisection method", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, No. 1, (2015), 110-121.
20. Yuan, S., Wang, X., Liu, G. and Wang, Z., "Control and use of wrinkles in tube hydroforming", Journal of Materials Processing Technology, Vol. 182, No. 1-3, (2007), 6-11. 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir