Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 32, No. 4 (April 2019) 580-586    Article in Press

PDF URL: http://www.ije.ir/Vol32/No4/A/16-3056.pdf  
downloaded Downloaded: 44   viewed Viewed: 275

  LECTRICAL AND MECHANICAL PERFORMANCE OF HYBRID AND NON-HYBRID COMPOSITES
 
O. F. El-Menshawy, A. R. EL-Sissy, M. S. EL-Wazery and R. A. Elsad
 
( Received: December 07, 2018 – Accepted: March 07, 2019 )
 
 

Abstract    This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for the hybrid composites with combinations [2C-2G], where the water absorption ratio reached to 1%. In addition, the maximum tensile, flexural strengths and ILSS of this combination were 123 MPa, 1397 MPa, and 22.35 MPa, respectively. This is due to the higher tensile strength of polyester matrix and good adhesion between the glass and carbon fabrics with the polyester matrix. The dielectric constant of non-hybrid composite with codes [C] is higher than non-hybrid composite with codes [G] and dielectric constant for all hybrid composites lies between non-hybrid composites.

 

Keywords    Hybrid Composites; Water Absorption; Mechanical Behavior; Dielectric Constant

 

چکیده   

در این مقاله جذب رطوبت، رفتار مکانیکی و عملکرد دی الکتریک کامپوزیت‌های پلیمری ترکیبی و غیرترکیبی بررسی شده است. روش کپی دست برای پردازش کربن، کامپوزیت رزین پلی‌استر تقویت‌شده شیشه (غیرترکیبی) و کامپوزیت هیبرید کربن شیشه‌ای/پلی‌استر با تنظیمات فیبرهای مختلف استفاده شد. حداکثر مقاومت در برابر جذب آب برای کامپوزیت‌های هیبریدی با ترکیب [2C-2G]، که در آن نسبت جذب آب به 1% رسید، به دست آمد. علاوه بر این، حداکثر کشش، مقاومت خمشی و ILSS این ترکیب به ترتیب 123 مگاپاسکال، 1397 مگاپاسکال و 35/22 مگاپاسکال بود. این به علت استحکام کششی ماتریس پلی‌استر و چسبندگی خوب بین شیشه و کربن پارچه با ماتریس پلی‌استر است. ثابت دی الکتریک کامپوزیت غیرهیبریدی با کد [C] بالاتر از کامپوزیت غیرترکیبی با کدهای [G] و ثابت دی الکتریک برای تمام کامپوزیت‌های هیبریدی بین کامپوزیت‌های غیرترکیبی بوده است.

References   

1. Artemenko, S. E. and Kadykova, Y. A., “Hybrid composite materials”, Fibre Chemistry, Vol. 40, No. 6, (2008), 490–492. 
2. Lee, D., “Fabrication methods for composite automotive components”, Auto Journal, Vol. 28, No. 140, (2006), 27–33. 
3. Pathania, D. and Singh, D., “A review on electrical properties of fiber reinforced polymer composites”, International journal of theoretical & applied sciences, Vol. 1, No. 2, (2009), 34–37. 
4. Brøndsted, P., Lilholt, H., and Lystrup, A., “Composite materials for wind power turbine blades”, Annual Review of Materials Research, Vol. 35, No. 1, (2005), 505–538. 
5. GuruRaja, M. and HariRao, A., “Hybrid effect on Tensile Properties of Carbon/Glass Angle Ply Composites”, Journal of Advances in Material, Vol. 2, No. 3, (2013), 36–41. 
6. Murugan, R., Ramesh, R., and Padmanabhan, K., “Investigation on Static and Dynamic Mechanical Properties of Epoxy Based Woven Fabric Glass/Carbon Hybrid Composite Laminates”, Procedia Engineering, Vol. 97, (2014), 459–468. 
7. Turla, P., Kumar, S.S., Reddy, P.H., and Shekar, K.C., “Interlaminar shear strength of carbon fiber and glass fiber reinforced epoxy matrix hybrid composite”, nternational Journal of Research in Engineering & Advanced Technology , Vol. 2, No. 2, (2014), 1–4. 
8. Jagannatha, T. D. and Harish, G., “Mechanical Properties of Carbon/Glass Fiber Reinforced Epoxy Hybrid Polymer Composites”, International Journal of Mechanical Engineering and Robotics Research, Vol. 4, No. 2, (2015), 131–137. 
9. Randjbaran, E., Zahari, R., Jalil, A., Aswan, N., Majid, A.A., and Laila, D., “Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing”, The Scientific World Journal, Vol. 2014, No. 1–7, (2014), 413753-413759.
10. Mohamed N A., EL-Wazery, M S., EL-Elamy, M. I., and Zoalfakar, S. H., Mechanical and Dynamic Properties of Hybrid Composite laminates, International Journal of Advanced Engineering and Global Technology, Vol. 5, No. 3, (2017), 1703-1725.
11. Braga, R. A. and Magalhaes, P. A. A., “Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites”, Materials Science and Engineering: C, Vol. 56, (2015), 269–273. 
12. Ekşı, S. and Genel, A. K., “omparison of Mechanical Properties of Unidirectional and Woven Carbon, Glass and Aramid Fiber Reinforced Epoxy Composites”, Acta Physica Polonica A, Vol. 132, No. 3, (2017), 879–882. 
13. EL-Wazery, M. S., “Mechanical Characterization of Glass-Basalt-Carbon/Polyester Hybrid Composites”, International Journal of Engineering - Transactions A: Basic,, Vol. 31, No. 7, (2018), 1139–1145. 
14. EL-Wazery, M. S., EL-Elamy, M. I., and Zoalfakar, S. H., “Mechanical Properties of Glass Fiber Reinforced Polyester Composites”, International Journal of Applied Science and Engineering, Vol. 14, No. 3, (2017), 121–131. 
15. Gupta, M. K., “Effect of Variation in Frequencies on Dynamic Mechanical Properties of Jute Fibre Reinforced Epoxy Composites”, Journal of Materials and Environmental Sciences, Vol. 9, No. 1, (2017), 100–106. 
16. Surowska, B. and Ostapiuk, M., “Electrical properties of aluminium-fibre reinforced composite laminates”, Composites Theory and Practice, Vol. 16, No. 4, (2016), 223--229. 
17. Wang, S. and Chung, D. D. L., “Electrical behavior of carbon fiber polymer-matrix composites in the through-thickness direction”, Journal of Materials Science, Vol. 35, No. 1, (2000), 91–100. 
18. C armisciano, S., De Rosa, I.M., Sarasini, F., Tamburrano, A., and Valente, M., “Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties”, Materials & Design, Vol. 32, No. 1, (2011), 337–342. 
19. Dathwade, B.P., Mj, R., and Channakeshava, K.R., Electrical Inserts in Glass Fiber Reinforced Polymer Composite, European Journal of Advances in Engineering and Technology, vol. 3, no (2), (2016), 56-59.
20. Alagirusamy, R., Fangueiro, R., Ogale, V., and Padaki, N., “Hybrid Yarns and Textile Preforming for Thermoplastic Composites”, Textile Progress, Vol. 38, No. 4, (2006), 1–71. 
21. EL-Wazery, M. S., “Mechanical Characteristics and Novel Applications of Hybrid Polymer Composites- A Review”, Journal of Materials and Environmental Sciences , Vol. 8, No. 2, (2017), 666–675. 
22. Jayamani, E., Hamdan, S., Rahman, M.R., and Bakri, M.K.B., “Comparative Study of Dielectric Properties of Hybrid Natural Fiber Composites”, Procedia Engineering, Vol. 97, (2014), 536–544. 
23. Yao, L., Li, W., Wang, N., Li, W., Guo, X., and Qiu, Y., “Tensile, impact and dielectric properties of three dimensional orthogonal aramid/glass fiber hybrid composites”, Journal of Materials Science, Vol. 42, No. 16, (2007), 6494–6500. 
24. Hippel, A. V., Dielectrics and waves, Wiley, New York, (1954).
25. Ramesh, S. and Arof, A., “Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes”, Materials Science and Engineering: B, Vol. 85, No. 1, (2001), 11–15. 
26. Raptis, C. G., Patsidis, A., and Psarras, G. C., “Electrical response and functionality of polymer matrix-titanium carbide composites”, eXPRESS Polymer Letters, Vol. 4, No. 4, (2010), 234–243. 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir