Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 32, No. 4 (April 2019) 503-509    Article in Press

PDF URL: http://www.ije.ir/Vol32/No4/A/7-3047.pdf  
downloaded Downloaded: 41   viewed Viewed: 342

  DUAL-BAND, DYNAMICALLY TUNABLE PLASMONIC METAMATERIAL ABSORBERS BASED ON GRAPHENE FOR TERAHERTZ FREQUENCIES
 
S. Jarchi, J. Rashed-Mohassel and M. Mehranpour
 
( Received: May 23, 2018 – Accepted in Revised Form: March 07, 2019 )
 
 

Abstract    In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the designed structure is made of four complementary square rings, on a thin grounded SiO2 layer of 5 µm thickness. Four splits are included in the square rings to provide continuity of graphene layer. Dual band absorption of 90% is provided, which frequency of peak absorption increases with increasing chemical potential of graphene layer. It is shown that with varying dimensions of the split rings an improved bandwidth absorber is also achieved, where absorption band increases with increasing graphene's chemical potential either. To better understand excitation of plasmonic resonances on the proposed structure, electric field distribution on the graphene layer as well as at the unit cell’s cross section is investigated and graphically demonstrated. Dependence of absorption on incidence and polarization angles of the incoming wave is studied and also graphically presented.

 

Keywords    Graphene; Metamaterial; Terahertz Absorber; Tunable Absorber; Dual-band Absorber

 

چکیده   

در این مقاله یک جاذب فراماده پلاسمونی فشرده برای فرکانسهای تراهرتز پیشنهاد شده و شبیه سازی شده است. جاذب براساس ساختارهای گرافنی فراماده می باشد و از ويژگی قابلیت کنترل پویای گرافن بهره می برد. با استفاده از شکل دهی لایه گرافن، تشدیدهای پلاسمونی طوری طراحی شده اند که جذب دو باند، و همین طور جذب با پهنای باند بهبوديافته بدست آید. سلول واحد ساختار طراحی شده از چهار حلقه مربعی مکمل تشکیل شده است که روی یک لایه SiO2 زمین شده با ضخامت 5 میکرومتر قرار دارند. در حلقه های مربعی چهار شکاف قرار داده شده است تا پیوستگی لایه گرافن حفظ شود. جذب دو باند بالای 90% بدست آمده است، به طوری که فرکانس بیشینه جذب با افزایش پتانسیل شیمیایی گرافن زیاد می شود. نشان داده شده است که با تغییر ابعاد حلقه های شکاف دار، جاذب با پهنای باند بهبود یافته محقق می شود که در آن نیز باند جذب با افزایش پتانسیل شیمیایی گرافن افزایش می یابد. به منظور درک بهتر برانگیختگی تشدیدهای پلاسمونی در ساختار پیشنهاد شده، گستردگی میدان الکتریکی روی لایه گرافن، و همین طور در سطح برش سلول واحد بررسی شده و با استفاده از شکل نشان داده شده است. وابستگی جذب به زوایای تابش و قطبش موج برخوردی مطالعه و ارایه شده است.

References   

1. Caloz, C., “Dual composite rigth/left-handed (D-CRLH) transmission line metamaterial”, IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, (2006), 585-587.
2. Gil, M., Bonache, J., Garcia-Garcia, J., Martel, J., Martin, F., “Composite Right/Left-Handed Metamaterial Transmission Lines Based on Complementary Split-Rings Resonators and Their Applications to Very Wideband and Compact Filter Design”, IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 6, (2007), 1296-1304. 
3. Fakharian, M. and Rezaei, P., "Parametric study of uc-pbg structure in terms of simultaneous amc and ebg properties and its applications in proximity-coupled fractal patch antenna", International Journal of Engineering, Transactions A: Basics,  Vol. 25, No. 4, (2012), 347-352.
4. Jarchi, S., Rashed-Mohassel, J., Faraji-Dana, R. and Shahabadi, M., "Complementary periodic structures for miniaturization of planar antennas", International Journal of Engineering, Transactions A: Basics,  Vol. 28, No. 10, (2015), 1463-1470.
5. Jarchi, S., Soltan-Mohammadi, O., Rashed-Mohassel, J., “A planar, layered ultra-wideband Metamaterial absorber for microwave frequencies”, International Journal of Engineering,  Transactions C: Aspects, Vol. 30, No. 3, (2017), 338-343.
6. Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L., “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber”, IEEE Photonics Journal, Vol. 7, No. 1, (2015), (4600108).
7. He, X., Yan, S., Ma, Q., Zhang, Q., Jia, P., Wu, F., Jiang, J., “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials”, Optics Communications, Vol. 340, (2015), 44–49.
8. Wang, B.X.,  Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X., “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber”, Journal of Lightwave Technology, Vol. 32, No. 12, (2014), 2293-2298.
9. Cheng, Y., Nie, Y., Gong, R., “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films”, Optics & Laser Technology, Vol. 48, (2013), 415–421.
10. Huang, L., Chowdhury, D.R., Ramani, S., Reiten, M.T., Luo, S.N., Azad, A.K., Taylor, A.J., Chen, H.T., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers”, Applied Physics Letters, Vol. 101, No. 10, (2012), https://doi.org/10.1063/1.4749823.
11. Chen, H.T., O’Hara, J.F., Taylor, A.J., Averitt, R.D., “Complementary planar terahertz metamaterials”, Optics Express, Vol. 15, No. 3, (2007), 1084-1095.
12. Fan, Y., Wei, Z., Zhang, Z., Li, H., “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators”, Optics Letters, Vol. 38, No. 24, (2013), 5410-5413.
13. Alaee, R.,  Farhat, M., Rockstuhl,C., Lederer, F., “A perfect absorber made of a graphene micro-ribbon metamaterial”, Optics Express, Vol. 20,  No.27, (2012), 28017-28024.
14. Khavasi, A., “Design of ultra-broadband graphene absorber using circuit theory”, Journal of the Optical Society of America B, Vol. 32, No. 9, (2015), 1941-1946.
15. Andryieuski, A., Lavrinenko, A.V., “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach”, Optics Express, Vol. 21, No.7, (2013), 9144-9155.
16. Yao, G., Ling, F., Yue, J., Luo, C., Luo, Q., Yao, J., “Dynamically Electrically Tunable Broadband Absorber Based on Graphene Analog of Electromagnetically Induced Transparency”, IEEE Photonics Journal, Vol. 8, No. 1, (2016), https://doi.org/10.1109/JPHOT.2015.2513210.
17. Grigorenko, A.N., Polini, M., Novoselov, K.S., “Graphene plasmonics”, Nature Photonics, Vol. 6, (2012), 749–758,
18. Gómez-Díaz, J.S., Perruisseau-Carrier, J., Sharma, P., Ionescu, A., “Non-contact characterization of graphene surface impedance at micro and millimeter waves”, Journal of Applied Physics, Vol. 111, No. 11, (2012).


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir