Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 32, No. 3 (March 2019) 451-459   

PDF URL: http://www.ije.ir/Vol32/No3/C/14-3039.pdf  
downloaded Downloaded: 39   viewed Viewed: 226

  PREDICTION OF NOISE TRANSMISSION LOSS AND ACOUSTIC COMFORT ASSESSMENT OF A VENTILATED WINDOW USING STATISTICAL ENERGY ANALYSIS
 
F. Khalvati and A. Omidvar
 
( Received: November 03, 2018 – Accepted in Revised Form: March 07, 2019 )
 
 

Abstract    In this paper, an analytical method was developed based on Statistical Energy Analysis framework to evaluate sound transmission loss through ventilated windows. Results of the mathematical model were validated against reported experimental data for a ventilated window and a good agreement was shown. To evaluate the efficiency of the ventilated window in provision of desirable indoor acoustic comfort, first, the outdoor noise spectra were classified into three categories of car, railway and airplane noises. Then, the indoor noise spectra resulted by the outdoor noise spectra and sound transmission loss of the ventilated window were transformed to single-rating noise criteria and were compared to the indoor noise level limits recommended by the acoustic standards. The results showed the acceptance of the indoor noise level made by the ventilated window. To recognize how the effective factors improve the acoustic performance of the ventilated window, the effect of window aspect ratio, channel thickness and opening size on Sound Transmission Class (STC) were studied. The results revealed that the ventilated window with higher aspect ratio and wider airflow channel has the higher STC while widening the opening size reduces the sound insulation.

 

Keywords    Ventilated window, Statistical Energy Analysis, Sound insulation, Traffic noise spectra, Sound transmission loss, Acoustic comfort

 

چکیده    در مقاله حاضر یک روش تحلیلی بر مبنای رویکرد تحلیل آماری انرژی برای ارزیابی عملکرد صوتی پنجره تهویه­­ شونده توسعه داده شده است. نتایج این مدل ریاضی با داده­ های آزمایشگاهی موجود در مقالات اعتبارسنجی شد و تطابق خوبی بین این نتایج مشاهده شد. برای ارزیابی کارایی پنجره تهویه­ شونده در تأمین آسایش آکوستیکی فضای داخل ابتدا طیف نوفه ­های ترافیکی محیط خارج در سه دسته نوفه­ خودرو، راه­آهن و هواپیما طبقه ­بندی شد. سپس طیف نوفه محیط داخل حاصل از این نوفه­­ ها و میزان تلفات صوتی پنجره محاسبه شد و با مقادیر نوفه مجاز پیشنهادی توسط استانداردهای صوتی مقایسه گردید. نتایج این مقایسه حاکی از مقبولیت تراز صوتی محیط داخل ناشی از پنجره تهویه­­ شونده است. همچنین برای تشخیص نحوه تأثیرگذاری فاکتورهای مؤثر بر عملکرد صوتی پنجره تهویه­ شونده، اثرتغییرات سه فاکتور نسبت ­منظر ، ضخامت کانال و اندازه دهانه ­های ورودی و خروجی پنجره بر شاخص کلاس انتقال صوت مطالعه شد. نتایج نشان داد که پنجره تهویه ­شونده با نسبت منظری و ضخامت کانال بیشتر مقادیر کلاس انتقال صوت بالاتری به همراه دارد در حالی­که افزایش اندازه دهانه ورودی و خروجی منجر به کاهش کلاس انتقال صوت و تضعیف عملکرد صوتی پنجره می ­شود.

References   

1.      Hossain, M.U., Meng, L., Farzana, S., Thengolose, A. L., ''Estimation and prediction of residential building energy consumption in rural areas of Chongqing''. International Journal of Engineering Transaction C: Aspects, Vol. 26, (2013), 955–962.

2.      Erell,E., Etzion,Y., Carlstrom,N., Sandberg, M., Molina, J., Maestree, I., Maldonado, E., Leal, V., Gutschker ,O., ''‘SOLVENT’: Development of a reversible solar-screen glazing system''. Energy and Buildings, Vol. 36, (2004), 467–480.

3.      Dhassa,AD., Natarajana, E., Lakshmi, P.,''An investigation of temperature effects on solar photovoltaic cells and modules''. International Journal of Engineering Transaction B: Applications, Vol. 27, (2014), 1713–1722.

4.      Kerry,G., Ford, RD.,''The field performance of partially open dual glazing''. Applied Acoustics, Vol. 7, (1974), 213–227.

5.      Kang, J., Brocklesby, MW.,''Feasibility of applying micro-perforated absorbers in acoustic window systems''. Applied Acoustics, Vol. 66, (2005), 669–689.

6.      Tong, Y.G., Tang, S.K.,''Plenum window insertion loss in the presence of a line source — A scale model study'' The Journal of the Acoustical Society of America, Vol. 133, No. 3 (2013): 1458-1467.

7.      Yu, X., Lau, S.-K.K., Cheng, L., Fangsen, C.,''A numerical investigation on the sound insulation of ventilation windows''. Elsevier Ltd, Applied Acoustics, Vol. 117, (2017), 113–121.

8.      Bajraktari, E., Lechleitner, J., Mahdavi, A.,''Estimating the sound insulation of double facades with openings for natural ventilation'', Energy Procedia, Vol. 78, (2015), 140–145.

9.      Craik, RJM., Smith, S.,''Non-resonant sound transmission through lightweight double walls using statistical energy analysis''. Applied Acoustics, Vol. 64, No. 3 (2003), 325-341.

10.    Wang, T., Li, S., Rajaram, S., Nutt, S.,''Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach''. Journal of Vibration and Acoustics, Vol. 132, (2010), 011004.

11.    Price, AJ., Crocker, MJ.,''Sound Transmission through Double Panels Using Statistical Energy Analysis''. The Journal of the Acoustical Society of America, Vol. 47, (1970), 683–693.

12.    Heckl, M., Lewit, M.,''Statistical Energy Analysis as a Tool for Quantifying Sound and Vibration Transmission Paths''. Philosophical Transactions: Physical Sciences and Engineering, Vol. 346, (1994), 449–464.

13.    Bies, DA., Hamid, S.,''In situ determination of loss and coupling loss factors by the power injection method''. Journal of Sound and Vibration, Vol. 70, (1980), 187–204.

14.    Beranek, LL., Acoustics. the American Institute of Physics for the Acoustical Society of America, (1986).

15.    Barron, RF., Industrial Noise Control and Acoustics. Industrial Noise Control and Acoustics, (2003). Epub ahead of print 2003. DOI: 10.1201/9780203910085.

16.    Cremer, L., Heckl, M., Ungar, EE., Structure-borne sound. Second. Berlin: Springer Verlag, (1988).

17.    Maidanik, G.,''Response of Ribbed Panels to Reverberant Acoustic Fields''. Journal of Acoustic Society of America, Vol. 34, (1962), 809–826.

18.    Fahy, F.,''Transmission of Sound through Partitions''. Sound and Structural Vibration, (1985), 143–215.

19.    Gomperts, M. C., Kihlman, T.,''The Sound Transmission Loss of Circular and Slit-Shaped Apertures in Walls''. Acta Acustica united with Acustica, Vol. 18, (1967), 144–150.

20.    Howell, JR.,''A Catalog of Radiation Heat Transfer Configuration Factors'', www.thermalradiation.net/ indexCat. html (accessed 14 September 2018).

21.    Sψndergaard, LS., Olesen, HS.,''Investigation of sound insulation for a Supply Air Window''. Forum Acusticum 2011, (2014), 1411–1416.

22.    Sandberg, U., Kropp, W., Larsson, K.,''The Multi-Coincidence Peak around 1000 Hz in Tyre / Road Noise Spectra''. Euronoise Naples 2003, Vol. 89, (2003),1–8.

23.    Buratti, C., Moretti, E.,''Traffic Noise Pollution : Spectra Characteristics and Windows Sound Insulation in Laboratory and Field Measurements''. Journal of Environmental Science and Engineering, Vol. 4, (2010), 28–36.

24.    Mesihovic, M., Rindel, JH., Milford, I.,''The need for updated traffic noise spectra , used for calculation of sound insulation of windows and facades''. (2016), 3890–3897.

25.    John, L., Davy.,''Insulating Buildings Against Transportation Noise''. In: transportation noise and vibration : the new millennium. Gold Coast, Australia, Transportation Noise and Vibration : the new millennium, (2004).

26.    Federal Aviation Administration,''Review and Evaluation of Aircraft Noise Spectra used to Estimate Noise Level Reduction for Airport Sound Insulation Programs based on the Loudspeaker Test Method''. (2016).

27.    ANSI Standard S12.2,''Criteria for  Evaluating Room Noise'', (2008).

28.             Ryherd ,EE., Wang, LM.,''Implications of human performance and perception under tonal noise conditions on indoor noise criteria''. The Journal of the Acoustical Society of America, Vol. 124, (2008), 218–226.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir