IJE TRANSACTIONS C: Aspects Vol. 32, No. 3 (March 2019) 445-450   

PDF URL: http://www.ije.ir/Vol32/No3/C/13-3037.pdf  
downloaded Downloaded: 24   viewed Viewed: 85

M. Abdolalipouradl, Sh. Khalilarya and S. Jafarmadar
( Received: February 01, 2019 – Accepted in Revised Form: March 07, 2019 )

Abstract    In this paper, a new power, heating and hydrogen cogeneration cycle from Sabalan geothermal two wells is proposed and analyzed. In the proposed system, a new double flash cycle and organic Rankine cycle are used for power production. A proton exchange membrane (PEM) is also used for hydrogen production and the domestic water heater is used for heating. The impacts of some design parameters, such as separators pressures, evaporator temperature, pinch point temperature difference and PEM temperature on the integrated system performance are investigated and then optimization is done from exergy point of view for three considered scenarios. According to the optimization results, the value of heating, net output power, hydrogen production and thermal and exergy efficiencies of the cogeneration system are obtained as 15751 kW, 18436 kW, 11.13 kg/h, 29.48% and 65.23%, respectively.


Keywords    Energy and Exergy Analysis; Sabalan Geothermal Power Plant; Organic Rankine Cycle; Hydrogen Production; Heating



در این مقاله امکان استفاده از چرخه ترکیبی جدیدی برای تولید همزمان گرمایش، توان و هیدروژن از چاه¬های زمین گرمایی سبلان مورد بررسی قرار گرفته است. در چرخه پیشنهادی، از یک آرایش جدید تبخیر آنی دو مرحله¬ای و چرخه¬ی رانکین آلی به عنوان چرخه مولد توان، از مبدل حرارتی غشای پروتونی برای تولید هیدروژن و از آبگرمکن داخلی برای گرمایش استفاده شده است. چرخه¬ی پیشنهادی سپس نسبت به پارامترهای مهم عملکرد همانند فشار جداساز اول و دوم، دمای اواپراتور، اختلاف دمای نقطه¬ی تنگش و دمای مبدل غشا پروتونی مورد مطالعه قرار گرفته و سپس برای سه سناریوی مختلف از دیدگاه اگزرژی مورد بهینه-سازی قرار گرفته است. طبق نتایج حاصله در حالت بهینه، برای چرخه¬ی تولید همزمان گرمایش، توان خالص تولیدی، تولید هیدروژن، بازده حرارتی و اگزرژی به ترتیب 15751 کیلووات، 18436 کیلووات، 13/11 کیلو گرم بر ساعت، 48/29 درصد و 23/65 درصد بدست آمد.


1. Mosaffa, A. H. and Zareei, A., “Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle”, Geothermics, Vol. 72, (2018), 47–63. 
2. Jradi, M. and Riffat, S., “Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies”, Renewable and Sustainable Energy Reviews, Vol. 32, (2014), 396–415. 
3. Zare, V., “A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy”, Energy Conversion and Management, Vol. 118, (2016), 264–274. 
4. Pham, A. T., Baba, T., Sugiyama, T., Shudo, T., “Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of PTFE treatment of the anode gas diffusion layer”, International Journal of Hydrogen Energy, Vol. 38, No. 1, (2013), 73–81. 
5. Ni, M., Leung, M. K. H., and Leung, D. Y. C., “Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant”, Energy Conversion and Management, Vol. 49, No. 10, (2008), 2748–2756. 
6. Ghaebi, H., Farhang, B., Parikhani, T., Rostamzadeh, H., “Energy, exergy and exergoeconomic analysis of a cogeneration system for power and  hydrogen  production  purpose  based   on TRR method and using low grade geothermal source”, Geothermics, Vol. 71, (2018), 132–145. 
7. Yuksel, Y. E., Ozturk, M., and Dincer, I., “Thermodynamic analysis and assessment of a novel integrated geothermal energy-based system for hydrogen production and storage”, International Journal of Hydrogen Energy, Vol. 43, No. 9, (2018), 4233–4243. 
8. Ratlamwala, T. A. H., Dincer, I., and Gadalla, M. A., “Performance analysis of a novel integrated geothermal-based system for multi-generation applications”, Applied Thermal Engineering, Vol. 40, (2012), 71–79. 
9. Noorollahi, Y., Yousefi, H., Itoi, R., Ehara, S., “Geothermal energy resources and development in Iran”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 5, (2009), 1127–1132. 
10. Noorollahi, Y., Shabbir, M. S., Siddiqi, A. F., Ilyashenko, L. K., Ahmadi, E., “Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy”, Geothermics, Vol. 77, (2019), 257–266. 
11. Mohammadzadeh Bina, S., Jalilinasrabady, S., and Fujii, H., “Thermo-economic evaluation of various bottoming ORCs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust”, Geothermics, Vol. 70, (2017), 181–191. 
12. Mohammadzadeh Bina, S., Jalilinasrabady, S., and Fujii, H., “Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant”, Geothermics, Vol. 72, (2018), 74–82. 
13. Aali, A., Pourmahmoud, N., and Zare, V., “Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran”, Energy Conversion and Management, Vol. 143, (2017), 377–390. 
15. abdolalipouradl,  mehran, Khalilarya, S., and jafarmadar,  samad, “Exergy analysis of a new proposal combined cycle from Sabalan geothermal source”, Modares Mechanical Engineering, Vol. 18, No. 4, (2018), 11–22. 
14. Abdolalipouradl, M., Khalilarya, S., and Jafarmadar, S., “The thermodynamic analysis of a novel integrated transcritical CO2 with Kalina 11 cycles from Sabalan geothermal wells”, Modares Mechanical Engineering, Vol. 19, No. 2, (2019), 335–346. 
16. Bejan, A., Tsatsaronis, G., Moran, M., Thermal design and optimization, John Wiley & Sons, (1996).

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir