IJE TRANSACTIONS B: Applications Vol. 32, No. 2 (February 2019) 268-274    Article in Press

downloaded Downloaded: 0   viewed Viewed: 31

J. Fabregas, A. Martinez and J. Unfried
( Received: August 24, 2018 – Accepted: January 03, 2019 )

Abstract    Shoulder geometry of tool plays an important role in friction-stir welding because it controls thermal interactions and heat generation. In this work is proposed and developed a coupled rigid-viscoplastic numerical modeling on computational fluid dynamics and finite element calculations. Model solves mass conservation, momentum, and energy equations in three dimensions, using appropriate boundary conditions, considering mass flow as a non-Newtonian, incompressible, viscoplastic material. Boundary conditions of heat transfer and material flow were determined using a sticking/sliding contact condition at tool / workpiece interface. Thermal history, shear stress and rotational speed fields, as well as axial forces and torque values of three shoulder geometry conditions were calculated. Results were compared with experimental data obtained from FSW in aluminum alloy AA1100 under equal simulated conditions. Thermal history and process parameters values showed good agreement with experimentally measured data.


Keywords    Friction stir welding, finite element model, aluminum alloy, heat generation, plasticity


References    1. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P., and Dawes, C. J., “Friction stir welding”, International patent application no. PCT/GB92102203 and Great Britain patent application, (9125978.8). (1991).   2. Mishra, R. S., and Ma, Z. Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, Vol 50, No. 1, (2005),  1-78.   3. Rai, R., De, A., Bhadeshia, H. K. D. H., and DebRoy, T., “Review: friction stir welding tools”, Science and Technology of welding and Joining, Vol 16, No. 4, (2011), 325-342.   4. Threadgill, P. L., Leonard, A. J., Shercliff, H. R., and Withers, P. J., “Friction stir welding of aluminium alloys”, International Materials Reviews, Vol 54, No. 2, (2013),49-93.   5. Nandan, R., DebRoy, T., and Bhadeshia, H. K. D. H., “Recent advances in friction-stir welding–process, weldment structure and properties”, Progress in Materials Science, Vol 53, No. 6, (2008), 980-1023.   6. Tanwar, P., and Kumar, V., “Friction Stir Welding: Review”, International Journal of Enhanced Research in Science Technology & Engineering, Vol 3, (2014), 172-176.   7. Zhang, Y. N., Cao, X., Larose, S., and Wanjara, P., “Review of tools for friction stir welding and processing”, Canadian Metallurgical Quarterly, Vol 51, No. 3, (2012), 250-261.   8. Lohwasser, D., and Chen, Z. (Eds.). “Friction stir welding: From basics to applications”, Cambridge, Elsevier, (2009).   9. Schmidt, H., and Hattel, J., “A local model for the thermomechanical conditions in friction stir welding”, Modelling and simulation in materials science and engineering, Vol 13, No. 1, (2004),  77.   10. Rajamanickam, N., Balusamy, V., Reddy, G. M., and Natarajan, K., “Effect of process parameters on thermal history and mechanical properties of friction stir welds”, Materials & Design, Vol 30, No. 7, (2009), 2726-2731.   11. McNelley, T. R., Swaminathan, S., and Su, J. Q., “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys” Scripta Materialia, Vol 58, No. 5, (2008), 349-354.   12. Murr, L. E., Flores, R. D., Flores, O. V., McClure, J. C., Liu, G., and Brown, D., “Friction-stir welding: microstructural characterization”, Material Research Innovations, Vol 1, No. 4, (1998),  211-223.   13. Colligan, K. J., and Mishra, R. S., “A conceptual model for the process variables related to heat generation in friction stir welding of aluminum”, Scripta Materialia, Vol 58, No. 5, (2008),  327-331.   14. Kumar, K., and Kailas, S. V., “The role of friction stir welding tool on material flow and weld formation”, Materials Science and Engineering: A, Vol 485, No. 1, (2008), 367-374.  15. Zhao, Y. H., Lin, S. B., Wu, L., and Qu, F. X., “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy”, Materials Letters, Vol 59, No. 23, (2005), 2948-2952.   16. Schmidt, H. B., and Hattel, J. H., “Thermal modelling of friction stir welding”, Scripta Materialia, Vol 58, No. 5, (2008), 332-337.   17. Ulysse, P., “Three-dimensional modeling of the friction stir-welding process”, International Journal of Machine Tools and Manufacture, Vol 42, No. 14, (2002), 1549-1557.   18. He, X., Gu, F., and Ball, A. “A review of numerical analysis of friction stir welding” Progress in Materials Science, Vol 65, (2014), 1-66.   19. Chen, C. M., and Kovacevic, R. “Finite element modeling of friction stir welding—thermal and thermomechanical analysis” International Journal of Machine Tools and Manufacture, Vol 43, No. 13, (2003), 1319-1326.    20. Buffa, G., Hua, J., Shivpuri, R., and Fratini, L. “Design of the friction stir welding tool using the continuum based FEM model” Materials Science and Engineering: A, Vol 419, No. 1, (2006), 381-388.    21. Zhang, H.W.. Zhang, Z Chen. J.T. “3D modeling of material flow in friction stir welding under different process parameter.” Journal of Materials Processing Technology, Vol 183 . No. 1, (2007),  62–70.   22. Malik, V., Sanjeev, N. K., Hebbar, H. S., and Kailas, S. V., “Investigations on the effect of various tool pin profiles in friction stir welding using finite element simulations” , Procedia Engineering, Vol 97, (2014), 1060-1068.   23. Al-Badour, F., Merah, N., Shuaib, A., and Bazoune, A. “Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes” Journal of Materials Processing Technology, Vol 213, No. 8, (2013), 1433-1439.   24. Su, H., Wu, C. S., Bachmann, M., and Rethmeier, M., “Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding”, Materials & Design, Vol 77, (2015), 114-125.   25. Grujicic, M., He, T., Arakere, G., Yalavarthy, H. V., Yen, C. F., and Cheeseman, B. A., “Fully coupled thermomechanical finite element analysis of material evolution during friction-stir welding of AA5083”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol 224, No. 4, (2010), 609-625.   26. Chiumenti, M., Cervera, M., de Saracibar, C. A., and Dialami, N., “Numerical modeling of friction stir welding processes”, Computer methods in applied mechanics and engineering, Vol 254, (2013), 353-369.   27. Nandan, R., Roy, G. G., and Debroy, T. “Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding”. Metallurgical and materials transactions A, Vol 37, No. 4, (2006), 1247-1259.   28. Mohan, R., Rajesh, N. R., and Satheesh Kumar, S. “Finite element modeling for maximum temperature in friction stir welding of AA1100 and optimization of process parameter by Taguchi. Method”. IJRET: International Journal of Research in Engineering and Technology, Vol 3, No. 5, (2014), 728 – 733.     29. Mohamadreza, N., Abbas S.M., and Spiro, Y., “Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: A review and case study” Engineering, Vol 3, (2011), 144-155.   30. Colegrove, P.A., and Shercliff, H.R. “3-Dimensional CFD modelling of flow around a threaded friction stir welding tool profile” Journal of Materials Processing Technology, Vol 169, No. 2, (2005), 320-327.   31. Atharifar, H., Lin, D., and Kovacevic, R. “Numerical and experimental investigations on the loads carried by the tool during friction stir welding” Journal of Materials Engineering and Performance, Vol 18, No. 4, (2009), 339-350.   32. Hasan, A. F., Bennett, C. J., and Shipway, P. H., “A numerical comparison of the flow behaviour in Friction Stir Welding (FSW) using unworn and worn tool geometries”, Materials & Design, Vol 87, (2015), 1037-1046.   33. Roy, B. S., Medhi, T., & Saha, S. C. “Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters”, World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, Vol 9, No. 6, (2015), 641-649.   34. Zhu, Y., Chen, G., Chen, Q., Zhang, G., and Shi, Q., “Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction”, Materials & Design, Vol 108, (2016), 400-410.   35. Chen, G., Shi, Q., Zhang, S., “Recent Development and Applications of CFD Simulation for Friction Stir Welding” In: TMS Annual Meeting & Exhibition. Springer, Cham, (2018), 113-118. 36. Kim, S. D., Yoon, J. Y., and Na, S. J., “A study on the characteristics of FSW tool shapes based on CFD analysis”, Welding in the World, Vol. 61, No. 5, (2017). 915-926.     }37. Dialami, N., Chiumenti, M., Cervera, M., and De Saracibar, C. A. “Challenges in thermo-mechanical analysis of friction stir welding processes”, Archives of Computational Methods in Engineering, Vol. 24, No. 1, (2017), 189-225.   38. Gadakh, V. S., and Adepu, K. “Heat generation model for taper cylindrical pin profile in FSW” Journal of Materials Research and Technology, Vol 2, No. 4, (2013), 370-375.   39. Querin, J.A., and Schneider, J.A., “Developing an alternative heat indexing equation for FSW” Welding Journal, Vol 91, (2012), 76-82.   40. Xiao, Y., Zhan, H., Gu, Y., and Li, Q., “Modeling heat transfer during friction stir welding using a meshless particle method”, International Journal of Heat and Mass Transfer, Vol 104, (2017), 288-300.   41. Dialami, N., Cervera, M., Chiumenti, M., Segatori, A., and Osikowicz, W., “Experimental Validation of an FSW Model with an Enhanced Friction Law: Application to a Threaded Cylindrical Pin Tool”, Metals, Vol. 7, No.11, (2017), 491.   42. Avila, J. A., Giorjao, R. A. R., Rodriguez, J., Fonseca, E. B., and Ramirez, A. J., “Modeling of thermal cycles and microstructural analysis of pipeline steels processed by friction stir processing”, The International Journal of Advanced Manufacturing Technology, (2018), 1-8.   43. Unfried-Silgado, J., Torres-Ardila, A., Carrasco-García, J. C., and Rodríguez-Fernández, J. "Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy", Dyna, Vol. 84, No. 200, (2017), 202-208.   44 Hamilton, R., MacKenzie, D., and Li, H., "Multi-physics simulation of friction stir welding process", Engineering Computations, Vol. 27, No. 8, (2010), 967-985.   45 Shi, Q. Y., Chen, G. Q., Wang, X. B., and Kang, X. “Numerical Analysis of Multi-Field Coupled Phenomena in Friction Stir Welding and Applications”, Materials Science Forum, Vol. 783, (2014), 1794-1807.   46. Arora, A., Nandan, R., Reynolds, A. P., and DebRoy, T., “Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments”, Scripta Materialia, Vol. 60, No.1, (2009), 13-16.   47. Biswas, P., and Mandal, N. R. “Effect of tool geometries on thermal history of FSW of AA1100” Welding Journal, Vol 90, (2011), 129-135.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir