Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 32, No. 2 (February 2019) 270-276    Article in Press

PDF URL: http://www.ije.ir/Vol32/No2/B/12-3011.pdf  
downloaded Downloaded: 46   viewed Viewed: 443

  DESIGNING A ROBUST CONTROL SCHEME FOR ROBOTIC SYSTEMS WITH AN ADAPTIVE OBSERVER
 
R. Gholipour and M. M. Fateh
 
( Received: October 14, 2018 – Accepted in Revised Form: January 03, 2019 )
 
 

Abstract    This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust control scheme is designed to compensate the uncertainties occurring in the control system. Moreover, upper bound of the lumped uncertainty is essential in the design of the robust controller. However, the upper bound of the lumped uncertainty is difficult to obtain in practical applications. Therefore, an adaptive law is derived to adapt the value of the lumped uncertainty, and an adaptive observer-based robust task-space controller is obtained. In this paper, we proved that the proposed adaptive observer-based controller can guarantee that the task-space tracking error and also the observation error converge to zero. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper.

 

Keywords    Robust Control, Adaptive Observer, Robotic Systems, Task-Space Control

 

چکیده   

این مقاله یک روش کنترل فضای کار مقاوم برای یک سیستم رباتیک با یک رویتگر تطبیقی معرفی می¬کند. روش پیشنهادی نیازی به دسترسی به حالات سیستم ندارد و یک رویتگر تطبیقی برای تخمین متغیر¬ های حالت طراحی می¬شود. سپس این حالات تخمینی در روش کنترل استفاده می-شوند. ابتدا، مدل دینامیکی یک ربات بدست می آید. در مرحله بعد، یک روش کنترل مقاوم مبتنی بر رویتگر برای جبران عدم قطعیت های موجود در سیستم کنترل طراحی می¬شود. علاوه بر این، بدست آوردن باند بالایی عدم قطعیت مجتمع در کاربرد¬ های عملی مشکل است. بنابراین، یک قانون تطبیقی برای تطبیق مقدار عدم قطعیت مجتمع بدست می آید، و یک کنترل کننده فضای کار مقاوم مبتنی بر رویتگر تطبیقی نتیجه می شود. در این مقاله، ما اثبات می¬کنیم که کنترل کننده مبتنی بر رویتگر تطبیقی پیشنهادی، می تواند تضمین کند که خطای ردگیری فضای کار و همچنین خطای رویتگر به صفر همگرا می-شوند. برای نشان دادن کارامدی روش پیشنهادی، نتایج شبیه سازی در این مقاله نشان داده می-شوند.

References   

1. Tang, G., Webb, P. and Thrower, J., “The development and evaluation of Robot Light Skin: A novel robot signalling system to improve communication in industrial human–robot collaboration”, Robotics and Computer-Integrated Manufacturing, Vol. 56, (2019), 85-94.
2. Yoon, H.S., Jeong, J.H. and Yi, B.J., 2018. Image-Guided Dual Master–Slave Robotic System for Maxillary Sinus Surgery. IEEE Transactions on Robotics, Vol. 34, No. 4, (2018), 1098-1111.
3. Bouteraa, Y., Abdallah, I.B. and Ghommam, J., “Task-space region-reaching control for medical robot manipulator”, Computers & Electrical Engineering, Vol. 67, (2018), 629-645.
4. Khorashadizadeh, S. and Fateh, M.M., “Uncertainty estimation in robust tracking control of robot manipulators using the Fourier series expansion”, Robotica, Vol. 35, No. 2, (2017), 310-336.
5. Kumar, V.M. and Thipesh, D.S.H., “Robot ARM performing writing through speech recognition using dynamic time warping algorithm”, International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 8, (2017), 1238-1245.
6. Sangdani, M.H. and Tavakolpour-Saleh, A.R., “Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm”, International Journal of Engineering, Transactions C: Aspects, Vol. 31, No. 3, (2018), 480-486.
7. Khorashadizadeh, S. and Fateh, M.M., “Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation”, Nonlinear Dynamics, Vol. 79, No. 2, (2015), 1151-1161.
8. Gholipour, R., Khosravi, A. and Mojallali, H., “Parameter estimation of loranz chaotic dynamic system using bees algorithm”, International Journal of Engineering, Transactions C: Aspects, Vol. 26, No. 3, (2013), 257-262. 
9. Wang, Y., Chai, T. and Zhang, Y., “State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems”, Information Sciences, Vol. 180, No. 24, (2010), 5029-5040.
10. Fateh, M.M. and Sadeghijaleh, M., “Voltage control strategy for direct-drive robots driven by permanent magnet synchronous motors”, International Journal of Engineering, Transactions B: Applications, Vol. 28, No. 5, (2015), 709-716.
11. Lee, D., “Nonlinear disturbance observer-based robust control for spacecraft formation flying”, Aerospace Science and Technology, Vol. 76, (2018), 82-90.
12. Kaheni, M., Hadad Zarif, M., Akbarzadeh Kalat, A. and Fadali, M.S., “Radial Pole Paths SVSC for Linear Time Invariant Multi Input Systems with Constrained Inputs”, Asian Journal of Control, https://doi.org/10.1002/asjc.1923, (2020).
13. Kaheni, M., Hadad Zarif, M., Akbarzadeh Kalat, A. and Sami Fadali, M., “Soft Variable Structure Control of Linear Systems via Desired Pole Paths”, Information Technology And Control, Vol. 47, No. 3, (2018), 447-456.
14. Gholipour, R., Khosravi, A. and Mojallali, H., “Multi-objective optimal backstepping controller design for chaos control in a rod-type plasma torch system using Bees Algorithm”, Applied Mathematical Modelling, Vol. 39, No. 15, (2015), 4432-4444.
15. Gholipour, R., Khosravi, A. and Mojallali, H., “Suppression of chaotic behavior in duffing-holmes system using back-stepping controller optimized by unified particle swarm optimization algorithm”, International Journal of Engineering, Transactions B: Applications, Vol. 26, No. 11, (2013), 1299-1306.   
16. Gholipour, R., Khosravi, A. and Mojallali, H., “Bees algorithm based intelligent backstepping controller tuning for Gyro system”, The Journal of Mathematics and Computer Science, Vol. 5, No. 3, (2012), 205-211.
17. Gholipour, R., Khosravi, A. and Mojallali, H., “Intelligent Backstepping Control for Genesio-Tesi ChaoticSystem Using a Chaotic Particle Swarm OptimizationAlgorithm”, International Journal of Computer and Electrical Engineering, Vol. 4, No. 5, (2012), 618-625.
18. Leu, Y.G., Wang, W.Y. and Lee, T.T., “Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems”, IEEE Transactions on Neural networks, Vol. 16, No. 4, (2005), 853-861.
19. Gholipour, R. and Fateh, M.M., “Adaptive task-space control of robot manipulators using the Fourier series expansion without task-space velocity measurements”, Measurement, Vol. 123, (2018), 285-292.
20. Gholipour, R. and Fateh, M.M., “Observer-based robust task-space control of robot manipulators using Legendre polynomial”, In Electrical Engineering (ICEE), Iranian Conference on, IEEE, (2017), 766-771.
21. Spong, M.W., Hutchinson, S. and Vidyasagar, M., “Robot modeling and control”, Vol. 3. New York: Wiley, (2006), 187-227.
22. Izadbakhsh, A. and Khorashadizadeh, S., “Robust task-space control of robot manipulators using differential equations for uncertainty estimation”, Robotica, Vol. 35, No. 9, (2017), 1923-1938.
23. Lin, F.J., Chen, S.G. and Sun, I.F., “Intelligent sliding-mode position control using recurrent wavelet fuzzy neural network for electrical power steering system” International Journal of Fuzzy Systems, Vol. 19, No. 5, (2017), 1344-1361.
24. Lin, F.J., Chen, S.G. and Sun, I.F., “Adaptive backstepping control of six‐phase PMSM using functional link radial basis function network uncertainty observer”, Asian Journal of Control, Vol. 19, No. 6, (2017), 2255-2269.
25. Slotine, J.J.E. and Li, W., “Applied nonlinear control”,  (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall, (1991).
26. Khorashadizadeh, S. and Majidi, M.H., “Chaos synchronization using the Fourier series expansion with application to secure communications”, AEU-International Journal of Electronics and Communications, Vol. 82, (2017), 37-44.
27. Khorashadizadeh, S. and Sadeghijaleh, M., “Adaptive fuzzy tracking control of robot manipulators actuated by permanent magnet synchronous motors”, Computers & Electrical Engineering, Vol. 72, (2018), 100-111.
28. Fateh, M.M. and Baluchzadeh, M., “Modeling and robust discrete LQ repetitive control of electrically driven robots”, International Journal of Automation and Computing, Vol. 10, No. 5, (2013), 472-480. 
29. Gholipour, R., Addeh, J., Mojallali, H. and Khosravi, A., “Multi-Objective Evolutionary Optimization of PID Controller by Chaotic Particle Swarm Optimization”, International Journal of Computer and Electrical Engineering, Vol. 4, No. 6, (2012) 833-838.
30. Mojallali, H., Gholipour, R., Khosravi, A. and Babaee, H., “Application of chaotic particle swarm optimization to PID parameter tuning in ball and hoop system”, International Journal of Computer and Electrical Engineering, Vol. 4, No. 4, (2012), 452-457.
31. Sedighizadeh, M. and Kashani, M.F., “A tribe particle swarm optimization for parameter identification of proton exchange membrane fuel cell”, International Journal of Engineering-Transactions A: Basics, Vol. 28, No. 1, (2014), 16-24.
32. Jam, S., Shahbahrami, A. and Ziyabari, S.H.S., “Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform”, International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 1, (2017), 48-56.
33. Jafaripanah, S., Dehghani, A. and Bakhshi, H., “Using the Genetic Algorithm based on the Riedel Equation to Predict the Vapor Pressure of Organic Compounds”, International Journal of Engineering, Transactions C: Aspects, Vol. 31, No. 6, (2018), 863-869.
34. Xiang, Y., Zhou, Y., Tang, L. and Chen, Z., “A decomposition-based many-objective artificial bee colony algorithm”, IEEE Transactions on Cybernetics, Vol. 49, No. 1, (2019), 287-300.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir