Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 32, No. 2 (February 2019) 191-197    Article in Press

downloaded Downloaded: 0   viewed Viewed: 22

  FABRICATION OF NANOPOROUS FUNCTIONALIZED HYDROXYAPATITE AS HIGH PERFORMANCE ADSORBENT FOR ACID BLUE 25 DYE REMOVAL
 
H. Ghafouri Taleghani, F. Darvishalipour, M. Ghorbani and H. Salimi-Kenari
 
( Received: October 02, 2018 – Accepted: January 03, 2019 )
 
 

Abstract    In the present study, nanoporous hydroxyapatite was synthesized and functionalized via tetraethylenepentamine in order to obtain a novel adsorbent for efficient removal of Acid Blue 25 dye from aqueous solution. Functionalized hydroxyapatite was characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM), Energy Dispersive Spectroscopy (EDS), and N2 adsorption-desorption. Batch adsorption studies were performed to investigate the effect of various parameters such as pH, initial dye concentration, adsorbent dosage, contact time and temperature. Results illustrated that dye removal percentage was reduced with incrementing of solution pH and dye concentration. Maximum removal of Acid Blue 25 in the solution having an initial dye concentration of 40 mg/L using 10 mg of adsorbent at 25 °C was 88%. Experimental kinetic data obeyed the pseudo second order model was appointed in 180 min. The Freundlich isotherm model also represented a better fit with adsorption data. The thermodynamic study was indicated that the adsorption process was spontaneous and exothermic. Results confirmed that FHAp adsorbent possess the potential to be used as a suitable candidate for Acid Blue 25 Dye removal from aqueous solutions.

 

Keywords    hydroxyapatite; dye removal; adsorbtion; nanoporous

 

چکیده    هدف از این تحقیق، سنتز یک نانوجاذب کارآمد برای حذف رنگ از محلول آبی در یک سیستم ناپیوسته می­باشد. به این منظور، هیدروکسی­آپاتیت سنتز و با استفاده از تترا اتیلن پنتامین عامل­دار گردید. شکل­شناسی، اندازه ذرات و مشخصات ساختاری نانوجاذب به وسیله آنالیز میکروسکوب الکترونی روبشی، جذب-واجذب گاز نیتروژن و پراش اشعه ایکس مورد بررسی قرار گرفت. همچنین ساختار مولکولی و عناصر موجود در نمونه­ها با استفاده از آنالیز جذب اشعه مادون قرمز و پراش انرژی پرتو ایکس مشخص شد. در مرحله بعد، کارایی نانوجاذب سنتز شده در حذف رنگ اسید بلو 25 از محلول آبی با استفاده از سیستم نا­پیوسته مورد بررسی قرارگرفت. عوامل مؤثر بر حذف رنگ اسید بلو 25، از قبیل pH محلول، غلظت اولیه رنگ در محلول، میزان جاذب، دما و زمان تماس ارزیابی شد. نتایج نشان داد بیشترین مقدار جذب در pH برابر 2، دمای 25 درجه سانتی­گراد و با مقدار 10 میلی­گرم از نانوجاذب به دست آمد. درصد حذف رنگ اسید بلو 25 در شرایط بهینه، محلول حاوی غلظت اولیه رنگ 40 میلی گرم در لیتر با استفاده از 10 میلیگرم جاذب در دمای 25 درجه سانتیگراد، 88% بوده که درصد قابل قبولی است. مطالعه تعادلی جذب نشان داد که جذب رنگ اسید بلو 25 توسط نانو جاذب هیدروکسی­آپاتیت عامل­دار شده از مدل ایزوترم فروندلیچ پیروی می­کند. داده­های تجربی با مدل­های سینتیکی شبه درجه اول، شبه درجه دوم و مدل نفوذ درون ذره­ای آنالیز شدند و مدل شبه مرتبه دوم همبستگی بالایی با داده­های تجربی داشتند. مطالعات ترمودینامیکی نیز نشان­دهنده گرمازا و خودبخودی بودن فرآیند جذب بوده است. نتایج نشان داد که جاذب FHAp می تواند به عنوان یک کاندید مناسب برای حذف اسید آبی 25 از محلول های آبی باشد.

References    1.    L. Y. Jun, et al., "An overview of functionalised carbon nanomaterial for organic pollutant removal", Journal of Industrial and Engineering Chemistry. Vol.  No. (2018), 2.    M. Anbia and A. Ghaffari, "Modified nanoporous carbon material for anionic dye removal from aqueous solution", International Journal of Engineering-Transactions B: Applications. Vol. 25 No. 4, (2012), 259-268. 3.    R. Ajemba, "Adsorption of malachite green from aqueous solution using activated ntezi clay: Optimization, isotherm and kinetic studies", International Journal of Engineering-Transactions C: Aspects. Vol. 27 No. 6, (2013), 839-854. 4.    M. Ruthiraan, E. Abdullah, N. Mubarak, and M. Noraini, "A promising route of magnetic based materials for removal of cadmium and methylene blue from waste water", Journal of Environmental Chemical Engineering. Vol. 5 No. 2, (2017), 1447-1455. 5.    R. L. Singh, P. K. Singh, and R. P. Singh, "Enzymatic decolorization and degradation of azo dyes–A review", International Biodeterioration & Biodegradation. Vol. 104 No. (2015), 21-31. 6.    M. Mohorčič, S. Teodorovič, V. Golob, and J. Friedrich, "Fungal and enzymatic decolourisation of artificial textile dye baths", Chemosphere. Vol. 63 No. 10, (2006), 1709-1717. 7.    F. Al-Momani, et al., "Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis", Journal of Photochemistry and Photobiology A: Chemistry. Vol. 153 No. 1-3, (2002), 191-197. 8.    M. Ruthiraan, E. Abdullah, N. Mubarak, and S. Nizamuddin, "Adsorptive removal of methylene blue using magnetic biochar derived from agricultural waste biomass: Equilibrium, Isotherm, Kinetic study", International Journal of Nanoscience. Vol.  No. (2017), 9.    Y. Omidi-Khaniabadi, et al., "Hexadecyl trimethyl ammonium bromide-modified montmorillonite as a low-cost sorbent for the removal of methyl red from liquid-medium", IJE transactions A: basics. Vol. 29 No. 1, (2016), 60-7. 10.  M. Kousha, et al., "Optimization of Acid Blue 25 removal from aqueous solutions by raw, esterified and protonated Jania adhaerens biomass", International Biodeterioration & Biodegradation. Vol. 69 No. (2012), 97-105. 11.  M. Auta and B. Hameed, "Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye", Chemical Engineering Journal. Vol. 171 No. 2, (2011), 502-509. 12.  K. Badii, F. D. Ardejani, M. A. Saberi, and N. Y. Limaee, "Adsorption of Acid blue 25 dye on diatomite in aqueous solutions". Vol.  No. (2010), 13.  E. Daneshvar, et al., "Shrimp shell as an efficient bioadsorbent for Acid Blue 25 dye removal from aqueous solution", Journal of the Taiwan Institute of Chemical Engineers. Vol. 45 No. 6, (2014), 2926-2934. 14.  M. G. Guiso, et al., "Adsorption of the prototype anionic anthraquinone, acid blue 25, on a modified banana peel: comparison with equilibrium and kinetic ligand–receptor biochemical data", Industrial & Engineering chemistry research. Vol. 53 No. 6, (2014), 2251-2260. 15.  S. M. Prabhu and S. Meenakshi, "Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution", Powder Technology. Vol. 268 No. (2014), 306-315. 16.  M. Islam, P. C. Mishra, and R. Patel, "Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water", Journal of Environmental Management. Vol. 91 No. 9, (2010), 1883-1891. 17.  L. Yang, et al., "Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu (II) from aqueous solution", Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 490 No. (2016), 9-21. 18.  Y. Le, D. Guo, B. Cheng, and J. Yu, "Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability", Journal of Colloid and Interface Science. Vol. 408 No. (2013), 173-180. 19.  E. Skwarek, et al., "Characteristics of surface and electrochemical properties of composites with fumed metal oxides and hydroxyapatite", Adsorption. Vol. 22 No. 4-6, (2016), 725-734. 20.  S. Salahi and M. Ghorbani, "Adsorption parameters studies for the removal of mercury from aqueous solutions using hybrid sorbent", Advances in Polymer Technology. Vol. 33 No. 4, (2014), 21.  I. Mobasherpour, M. S. Heshajin, A. Kazemzadeh, and M. Zakeri, "Synthesis of nanocrystalline hydroxyapatite by using precipitation method", Journal of Alloys and Compounds. Vol. 430 No. 1-2, (2007), 330-333. 22.  S. S. A. Abidi and Q. Murtaza, "Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction", Journal of Materials Science & Technology. Vol. 30 No. 4, (2014), 307-310. 23.  R. Sharma, et al., "In situ amino acid functionalization and microstructure formation of hydroxyapatite nanoparticles synthesized at different pH by precipitation route", Materials Chemistry and Physics. Vol. 133 No. 2-3, (2012), 718-725. 24.  L. Bakhtiari, et al., "Pore size control in the synthesis of hydroxyapatite nanoparticles: The effect of pore expander content and the synthesis temperature", Ceramics International. Vol. 42 No. 9, (2016), 11259-11264. 25.  M. Vila, et al., "Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water", Journal of Hazardous Materials. Vol. 192 No. 1, (2011), 71-77. 26.  W. He, et al., "Synthesis of mesoporous structured hydroxyapatite particles using yeast cells as the template", Journal of Materials Science: Materials in Medicine. Vol. 21 No. 1, (2010), 155-159. 27.  B. Nandi, A. Goswami, and M. Purkait, "Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies", Applied Clay Science. Vol. 42 No. 3-4, (2009), 583-590. 28.  M. Dahri, L. Lim, N. Priyantha, and C. Chan, "Removal of Acid blue 25 using Cempedak Durian peel from aqueous medium: Isotherm, kinetics and thermodynamics studies", International Food Research Journal. Vol. 23 No. 3, (2016), 29.  Y. Bulut and H. Aydın, "A kinetics and thermodynamics study of methylene blue adsorption on wheat shells", Desalination. Vol. 194 No. 1-3, (2006), 259-267. 30.  K. Khalid, et al., "Acid blue 25 adsorption onto phosphoric acid treated rubber leaf powder", American Journal of Environmental Engineering. Vol. 5 No. 3A, (2015), 19-25. 31.  A. Srinivasan and T. Viraraghavan, "Decolorization of dye wastewaters by biosorbents: a review", Journal of Environmental Management. Vol. 91 No. 10, (2010), 1915-1929. 32.  I. Langmuir, "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of the American Chemical Society. Vol. 40 No. 9, (1918), 1361-1403. 33.  K. Mahmud, et al., "Adsorption of direct yellow 27 from water by poorly crystalline hydroxyapatite prepared via precipitation method", Desalination and Water Treatment. Vol. 41 No. 1-3, (2012), 170-178. 34.  S. Saber-Samandari, S. Saber-Samandari, N. Nezafati, and K. Yahya, "Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads", Journal of Environmental Management. Vol. 146 No. (2014), 481-490. 35.  Y.-S. Ho and G. McKay, "Pseudo-second order model for sorption processes", Process Biochemistry. Vol. 34 No. 5, (1999), 451-465. 36.  M. P. Gatabi, H. M. Moghaddam, and M. Ghorbani, "Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study", Journal of Nanoparticle Research. Vol. 18 No. 7, (2016), 189.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir