IJE TRANSACTIONS A: Basics Vol. 32, No. 1 (January 2019) 54-61    Article in Press

PDF URL: http://www.ije.ir/Vol32/No1/A/7-2989.pdf  
downloaded Downloaded: 9   viewed Viewed: 121

K. Askaripour and M. J. Fadaee
( Received: November 26, 2018 – Accepted in Revised Form: January 03, 2019 )

Abstract    Potentially having a destructive influence on the mechanical properties of composite laminates, the invisible phenomenon of delamination frequently occurs under impact loading. In the present study, simulating the performance of long-gauge fiber Bragg grating sensors, impact-induced average strains within laminated composites are utilized to develop a delamination identification technique. First, strain-based modal parameters are extracted from the estimator of frequency response functions using two different approaches. Next, these parameters are employed in various damage detection indicators. Then, the presence, location, and severity of delamination introduced at locations with the least effect on modal changes are detected. The results of different numerical examples with various delamination sizes and positions elucidate the considerable efficiency of average-strain measurements to diagnose delaminated composites.


Keywords    Composite, Delamination Identification, Dynamic Strain, Impact



پدیده نامرئی تورق که دارای اثر مخربی روی خواص مکانیکی لمینیت‌های کامپوزیت است به طور مکرر تحت بارگذاری ضربه‌ای رخ می‌دهد. در مطالعه فعلی، با شبیه‌سازی عملکرد سنسورهای فیبری شبکه براگ با طول زیاد، کرنش‌های متوسط ناشی از ضربه در کامپوزیت‌های لایه‌ای برای توسعه تکنیک شناسایی تورق استفاده می‌شوند. ابتدا، پارامترهای مودال مبتنی بر کرنش از توابع پاسخ فرکانسی با استفاده از دو روش مختلف استخراج می‌شوند. سپس، این پارامترها در شاخص‌های شناسایی آسیب مختلف بکار می‌روند. بعد از آن، حضور، موقعیت و شدت تورق معرفی‌شده در موقعیت‌های با کمترین تاثیر روی تغییرات مودال شناسایی می‌شوند. نتایج مثال‌های عددی مختلف بیانگر کارایی قابل توجه سنجش‌های کرنش متوسط برای شناسایی کامپوزیت‌های متورق‌شده هستند.


1. Wang, Y. and Wu, Q., “Experimental detection of composite delamination damage based on ultrasonic infrared thermography”, International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 11, (2014), 1723–1730.
2. Saeedifar, M., Najafabadi, M. A., Zarouchas, D., Toudeshky, H. H. and Jalalvand, M., “Barely visible impact damage assessment in laminated composites using acoustic emission”, Composites Part B: Engineering, Vol. 152, (2018), 180-192.
3. Singh, S. and Angra, S., “Flexural and impact properties of stainless steel based glass fibre reinforced fibre metal laminate under hygrothermal conditioning”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 1, (2018), 164-172.
4. Zhang, Z., Shankar, K., Ray, T., Morozov, E. V., and Tahtali, M., “Vibration-based inverse algorithms for detection of delamination in composites”, Composite Structures, Vol. 102, (2013), 226–236.
5. Yang, C. and Oyadiji, S. O., “Detection of delamination in composite beams using frequency deviations due to concentrated mass loading”, Composite Structures, Vol. 146, (2016), 1-13.
6. Hassan, A., El-Wazery, M., and Zoalfakar, Sh., “Health monitoring of welded steel pipes by vibration analysis”, International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 12, (2015), 1782–1789.
7. Chandrashekhar, M. and Ganguli, R., “Damage assessment of composite plate structures with material and measurement uncertainty”, Mechanical Systems and Signal Processing, Vol. 75, (2016), 75–93.
8. Li, S. and Wu, Z., “Modal analysis on macro-strain measurements from distributed long-gage fiber optic sensors”, Journal of Intelligent Material Systems and Structures, Vol. 19, No. 8, (2008), 937–946.
9. Zhang, J., Guo, S., Wu, Z., and Zhang, Q., “Structural identification and damage detection through long- gauge strain measurements”, Engineering Structures, Vol. 99, (2015), 173–183.
10. Barbero, E. J., “Finite element analysis of composite materials using AbaqusTM”, CRC press, (2013). 
11. Della, C. N. and Shu, D., “Vibration of delaminated composite laminates: A review”, Applied Mechanics Reviews, Vol. 60, No. 1, (2007), 1–20.
12. Askaripour, Kh. and Fadaee, M. J., “Modification of an implicit approach based on nonstandard rules for structural dynamics analysis”, Mechanics Based Design of Structures and Machines, (2018), 1–17.
13. Shen, M.-H. and Grady, J., “Free vibrations of delaminated beams”, AIAA Journal, Vol. 30, No. 5, (1992), 1361–1370.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir