Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1472-1480    Article in Press

downloaded Downloaded: 0   viewed Viewed: 31

  TOWARD AN IMPROVEMENT OF NATURAL GAS-DIESEL DUAL FUEL ENGINE OPERATION AT PART LOAD CONDITION BY DETAIL CFD SIMULATION
 
H. Khatamnejad, S. Khalil Arya, S. Jafarmadar, S.M. Agha Mirsalim and M. Dahodwala
 
( Received: November 28, 2017 – Accepted: March 09, 2018 )
 
 

Abstract    Natural gas-diesel dual fuel combustion is a beneficial strategy for achieving high efficient and low emissions operation in compression ignition engines, especially in genset application heavy duty diesel engine at rated power. But, the main reported drawback of mentioned strategy is partial burning and incomplete combustion as well as high amount of HC and CO exhaust emissions at part load condition. This investigation presents results from a study about conventional dual fuel combustion development by using premixed natural gas as a main fuel and early direct injection of diesel fuel as a pilot ignition fuel at engine part load condition which will be introduced as RCCI mode. After experimentally comparison between conventional diesel and NG-diesel dual fuel strategy in combustion features and exhaust emissions level, combustion analysis have been presented in conventional dual fuel and RCCI mode with specified NG substitution in test cell engine at part load. To insight into combustion properties, RCCI mode were studied via a validated CFD combustion model coupled with chemical kinetic, in compared to conventional dual fuel combustion. The results revealed that RCCI strategy led to higher combustion efficiency as well as lower HC and CO emissions compared to conventional dual fuel combustion.

 

Keywords    RCCI Combustion, Natural gas, Diesel, CFD simulation coupled with chemical kinetic

 

چکیده    احتراق دوگانه سوز گاز طبیعی- دیزل راهبرد موثری در جهت دستیابی به عملکرد با بازده بالا و آلایندگی پایین در موتورهای اشتعال تراکمی، بویژه در کاربری سنگین نیروگاهی در بر و توان نامی موتور می­باشد. اما مهمترین مشکل گزارش شده در این راهبرد، احتراق جزیی و ناقص و در نتیجه انتشار مقادیر زیاد آلاینده های هیدروکربن نسوخته و مونواکسید کربن در بارهای پایین و جزیی موتور می­باشد. تحقیق حاضر نتایج یک مطالعه در خصوص توسعه احتراق دوگانه سوز مرسوم با بکارگیری مخلوط پیش آمیخته سوخت گاز طبیعی به عنوان سوخت اصلی و تزریق زودهنگام سوخت دیزل به عنوان سوخت آتش زنه را در بارهای پایین موتور ارائه می­نماید که تحت عنوان مفهوم احتراق واکنش پذیری پایش شده (RCCI) معرفی می­گردد. پس از مقایسه تجربی مابین حالت دیزلی مرسوم و راهبرد دوگانه سوز گاز طبیعی- دیزل در شاخصهای احتراقی و آلایندگی، تحلیل و بررسی احتراق در حالت دوگانه سوز مرسوم و RCCI با جایگزینی مقدار مشخصی از سوخت گاز طبیعی در یک موتور در اتاق آزمون و در بارهای پایین انجام می­شود. به منظور درک درست از ویژگیهای احتراق، حالت RCCI با یک مدل CFD صحه گذاری شده کوپل شده با سینتیک شیمیایی سوخت، در مقایسه با مفهوم احتراق دوگانه سوز مرسوم مطالعه می­گردد. نتایج نشان می­دهند که راهبرد RCCI منجر به بازده احتراقی بالاتر و انتشار آلاینده های هیدروکربن نسوخته و مونواکسید کربن در مقایسه با حالت دوگانه سوز مرسوم می­گردد.

References    [1]     Heywood JB. Internal combustion engine fundamentals. New York: McGraw Hill Book Company; 1988. [2]     Plee SL, Ahmad T, Myers JP. Flame temperature correlation for the effects of exhaust gas recirculation on diesel particulate and NOx emissions. SAE Paper 811195 SAE Transactions 1981; 90(4):3738e54. [3]     Zheng M, Asad U, Reader GT, Tan Y, Wang MP. Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. Int J Energy Res 2009;33:8–28. [4]     Nakagome K, Shimazak N, Niimura K. Combustion and emission characteristics of premixed lean diesel combustion engine. Society of Automotive Engineers. SAE 970898; 1997. [5]     Caton JA. Thermodynamic advantages of low temperature combustion (LTC) engines using low heat rejection (LHR) concepts. SAE Technical Paper 2011-01-0312. 2011. [6]     Jacobs T, Assanis D. The attainment of premixed compression ignition low temperature combustion in a compression ignition direct injection engine. Proc Combust Inst 2007;31:2913–20. [7]     Lü, X., Chen, W., Hou, Y., and Huang, Z., Study on the Ignition, Combustion and Emissions of HCCI Combustion Engines Fueled With Primary Reference Fuels, SAE Technical Paper 2005-01-0155, 2005, doi: 10.4271/2005-01-0155. [8]     Kimura, S., Aoki, O., Ogawa, H., Muranaka, S. et al., New Combustion Concept for Ultra-Clean and High Efficiency Small DI Diesel Engines. SAE Technical Paper 1999-01-3681, 1999, doi:10.4271/1999-01-3681. [9]     Yanagihara, H., A study of DI diesel combustion under uniform higher-dispersed mixture formation. JSAE Review, 1997, 18, pg. 247-254. [10]  Najt, P. and Foster, D., Compression-Ignited Homogeneous Charge Combustion. SAE Technical Paper 830264, 1983, doi: 10.4271/830264. [11]  Shibata, G. and Urushihara, T., “Realization of Dual Phase High Temperature Heat Release Combustion of Base Gasoline Blends from Oil Refineries and a Study of HCCI Combustion Processes,” SAE Int. J. Engines 2(1):145-163, 2009, doi:10.4271/2009-01-0298. [12]  Dec, J. and Yang, Y., Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline, SAE Int. J. Engines 3(1):750-767, 2010, doi:10.4271/2010- 01-1086. [13]  Reitz RD, Duraisamy G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci 2015;46:12–71. [14]   Najafabadi MI, Aziz NA. Homogeneous charge compression ignition combustion: challenges and proposed solutions. J Combust 2013;2013:783789. [15]  Reitz RD, Duraisamy G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci 2015;46:12–71. [16]     Doosje, E., Willems, F., Baert, R., and Van Dijk, M., “Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines,” SAE Technical Paper 2012-01-1114, 2012. [17]     Noehre, C., Andersson, M., Johansson, B., and Hultqvist, A.,“Characterization of Partially Premixed Combustion,” SAE Technical Paper 2006-01-3412, 2006. [18]     Kalghatgi, G., Risberg, P., and Ångström, H., “Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Lowtemperature, Compression Ignition Combustion,” SAE Technical Paper 2006-01-3385, 2006. [19]     Manente, V., Johansson, B., and Tunestal, P., “Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel,” SAE Technical Paper 2009-01-0944, 2009. [20]     Manente, V., Tunestal, P., Johansson, B., and Cannella, W., “Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion from Low to High Load,” SAE Technical Paper 2010-01-0871, 2010. [21]     Manente, V., Zander, C., Johansson, B., Tunestal, P. et al., “An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion,” SAE Technical Paper 2010-01-2198, 2010. [22]     Dempsey, A. and Reitz, R., “Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled with Conventional Gasoline,”SAE Int. J. Engines 4(1):338-359, 2011. [23]     Bessonette PW, Schleyer CH, Duffy KP, Hardy WL, Liechty MP. Effects of fuel property changes on heavy-duty HCCI combustion. SAE paper 2007-01-0191. 2007. [24]     Inagaki, K., Fuyuto, T., Nishikawa, K., Nakakita, K., and Sakata, I., “Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability,” SAE Technical Paper 2006-01-0028, 2006. [25]     Kokjohn, S., Hanson, R., Splitter, D., and Reitz, R., “Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending,” SAE Int. J. Engines 2(2):24-39, 2010. [26]     Splitter D, Kokjohn S, Rein K, Hanson R, Sanders S, Reitz RD. An optical investigation of ignition processes in fuel reactivity controlled PCCI combustion. SAE technical paper 2010-01-0345; 2010. [27]     Hanson RM, Kokjohn SL, Splitter DA, Reitz RD. An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE Int J Engines 2010. 2010-01-0864. [28]     Curran, S., Prikhodko, V., Cho, K., Sluder, C. et al., “In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine,” SAE Technical Paper 2010-01-2206, 2010, doi:10.4271/2010-01-2206. [29]     Benajes J, Molina S, Garcia A, Belarte E, Vanvolsem M. An Investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Appl Therm Eng 2014;63:66–76. [30]     Kokjohn S, Hanson R, Splitter D, et al. Fuel reactivity controlled compression ignition (RCCI) combustion in light and heavy-duty engines. SAE paper 2011– 01-0357, 2011. [31]     Park SH, Yoon SH, Lee CS. Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine. Appl Energy 2014;135:286–98. [32]     Jeftic´ M, Zheng M. A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies. Appl Energy 2015;157:861–70. [33]     Fraioli V, Mancaruso E, Migliaccio M, et al. Ethanol effect as premixed fuel in dual-fuel CI engines: experimental and numerical investigations. Appl Energy 2014;119:394–404. [34]     Guerry ES, Raihan MS, Srinivasan KK, Krishnan SR, Sohail A. Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion. Appl Energy 2016;162:99–113. [35]     Ma Sh, Zheng Z, Liu H, Zhang Q, Yao M. Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Appl Energy, 2013,109:202-12. [36]     N. Ryan Walker, Adam B. Dempsey, Michael J. Andrie, Rolf D. Reitz, “Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation,” SAE Technical Paper 2013-01-1605. [37]     M. Nazemi, M. Shahbakhti. “Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine.” Applied Energy 165 (2016) 135–150. [38]     Korakianitis T, Namasivayam AM, Crookes RJ. Natural-gas fueled spark ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog Energy Combust Sci, 2011, 37(1):89-112. [39]     Nieman, D., Dempsey, A., Reitz, R.D., 2012. Heavy-duty RCCI operation using natural gas and diesel. SAE Int. J. Engines 5 (2), 270e285. http://dx.doi.org/10.4271/ 2012-01-0379. [40]     Doosje, E., Willems, F., and Baert, R., “Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas,” SAE Technical Paper 2014-01-1318, 2014, doi:10.4271/2014-01-1318. [41]     Zhiqin Jia, Ingemar Denbratt, “Experimental Investigation of Natural Gas-Diesel Dual-Fuel RCCI in a Heavy-Duty Engine,” SAE Technical Paper 2015-01-0838, 2015. [42]     Dahodwala M, Joshi S, Koehler E, Franke M, Tomazic D. Experimental and computational analysis of diesel-natural gas RCCI combustion in heavy-duty engines. SAE Technical Paper 2015-01-0849; 2015. http://dx.doi.org/10.4271/ 2015-01-0849. [43]     Kakaee, A. H., Rahnama, P., & Paykani, A. (2015). Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine. Journal of Natural Gas Science and Engineering, 25, 58-65. [44]     Rahnama, P., Paykani, A., Bordbar, V., & Reitz, R. D. (2017). A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas. Fuel. [45]     Hanjalic, K.; Popovac, M.; Hadziabdic, M. A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat and Fluid Flow, 2004, 25, 1047–1051. [46]     Dukowicz JK. A particle-fluid numerical model for liquid sprays. J Comput Phys 1980; 35:229e53. [47]     Beale, J.C., Reitz, R.D., “Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model”, Atomization and Sprays, 9:623-650, 1999. [48]     Dukowicz JK. Quasi-steady droplet change in the presence of convection. Informal report. Los Alamos Scientific Laboratory. LA7997-MS. [49]     AVL FIRE User Guide, Version 2014, AVL List Gmbh; 2014. [50]     Kee RJ, Rupley FM, Meeks E, Miller JA. Chemkin-iii: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SAND96- 8216. Sandia National Laboratory Technical, Report; 1996. [51]     Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-mech3.0 data; 2006. <http://www.me.berkeley.edu/gri_mech.html>. [52]     Hiroyasu H, Kadota T. Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Technical paper 760129; 1976. [53]     Lounici, M. S., Loubar, K., Tarabet, L., Balistrou, M., Niculescu, D. C., & Tazerout, M. (2014). Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions. Energy, 64, 200-211. [54]     Cheenkachorn K, Poompipatpong C, Ho CG. Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy 2013,53,52-7. [55]     Mansor, M. R. A., Abbood, M. M., & Mohamad, T. I. (2017). The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine. Fuel, 190, 281-291. [56]     Dempsey   A., Curran S., Reitz R., “Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine”, SAE Int. J. Engines, 2015-01-0855. [57]     Zhao H. HCCI and CAI engines for the automotive industry. Elsevier; 2007 [chapter 15]. [58]     Khatamnezhad, Hassan, et al. "Numerical Investigation on the Effect of Injection Timing on Combustion and Emissions in a DI Diesel Engine at Low Temperature Combustion Conditions." IJE Transactions B: Applications, XXIV,(2) (2011): 165-179.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir