IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1028-1037    Article in Press

PDF URL: http://www.ije.ir/Vol31/No7/A/4-2834.pdf  
downloaded Downloaded: 58   viewed Viewed: 607

A. Sarlak, H. Saeedmonir and C. Gheyratmand
( Received: December 08, 2017 – Accepted in Revised Form: March 09, 2018 )

Abstract    In this study, through series of shaking table tests and statistical analysis, the efficiency of Uniform Tuned Liquid Column Damper (UTLCD) in structures resting on loose soils, considering soil-structure interaction was investigated. The soil beneath the structure is loose sandy soil. The Laminar Shear Box (LSB) as a soil container was adopted and the scaled form of the prototype structure namely model structure using scaling laws was built. Applying selected earthquake record the top story displacement of the soil-structure model was obtained. In the rest of the tests, the soil-structure model was equipped with UTLCD and tested. 3 different in sizes of UTLCDs, each with different blocking ratio and frequencies was used. To implement tests, completely randomized factorial design, with factors of Blocking ratio, Frequency and Type of the UTLCD was adopted. Through statistical analysis of the experimental tests was demonstrated that the mentioned factors are effective in response of the structure. Using Response Surface Methodology (RSM), the optimum values of the factors to minimize the top story displacement has been found. In this study it was demonstrated that, due to low reduction in structural responses (in average 12 percent), the optimum UTLCD is not efficient enough in controlling structures resting on loose soils.


Keywords    Uniform Tuned Liquid Column Damper; Statistical Analysis; Soil-Structure Interaction; Shaking Table Tests; Laminar Shear Box


چکیده    در این پژوهش با استفاده از آزمایشات میز لرزه و بهره­ گیری از تحلیل آماری، کارایی میراگر مایعی تنظیم شونده با مقطع یکنواخت در سازه­هایی که بر روی خاک سست قرار دارند، با منظور کردن اثر اندر کنش خاک و سازه ،مورد بررسی قرار گرفته است. خاک بستر سازه خاک ماسه­ای شل می­باشد. از جعبه برشی لایه­ای به عنوان مخزن جهت نگه داری خاک استفاده شد. مدل مقیاس شده سازه واقعی بر اساس قوانین حاکم بر مقیاس بندی ساخته شد. از طریق آزمایش میز لرزه سازه مدل آزمایشگاهی تحت یک رکورد زلزله منتخب قرار گرفت و جابه­جایی نوک سازه اندازه­ گیری شد. در مابقی آزمایشات، سازه مدل آزمایشگاهی که مجهز به میراگر مد نظر بود، مجددا تحت همان بارگذاری قرار گرفت. از سه اندازه متفاوت از میراگر مدنظر که هریک قطر روزنه وفرکانس تنظیمی متفاوت دارند، استفاده شد. به منظور انجام آزمایشات یک طرح فاکتوریل کاملا تصادفی با فاکتورهای قطر روزنه، فرکانس و اندازه میراگراستفاده شد. نتایج تحلیل های آماری موید تاثیرگذاربودن این فاکتورها در پاسخ­های سازه می­باشند. از روش رویه­های پاسخ به منظور پیدا کردن مقادیر بهینه فاکتورهای تاثیرگذارکه منجر به کمینه شدن جابه­جایی نوک سازه می­شود استفاده شد. در این تحقیق نشان داده شد با توجه به اینکه میراگر مدنظربه میزان کمی (به طور متوسط 12 درصد) باعث کاهش پاسخ­های سازه می­گردد درنتیجه به عنوان یک ابزار کنترل کارا در سازه­هایی که روی خاک سست قرار دارند تلقی نمی­شود.


1.     Connor, J. and Laflamme, S., "Structural motion engineering, Springer,  Vol. 493,  (2014).

2.     Fujii, K., Tamura, Y., Sato, T. and Wakahara, T., "Wind-induced vibration of tower and practical applications of tuned sloshing damper", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 33, No. 1-2, (1990), 263-272.

3.     Koh, C., Mahatma, S. and Wang, C., "Reduction of structural vibrations by multiple-mode liquid dampers", Engineering Structures,  Vol. 17, No. 2, (1995), 122-128.

4.     Jin, Q., Li, X., Sun, N., Zhou, J. and Guan, J., "Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform", Marine Structures,  Vol. 20, No. 4, (2007), 238-254.

5.     Cammelli, S., Li, Y.F. and Mijorski, S., "Mitigation of wind-induced accelerations using tuned liquid column dampers: Experimental and numerical studies", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 155, No., (2016), 174-181.

6.     Wu, J.-C., Shih, M.-H., Lin, Y.-Y. and Shen, Y.-C., "Design guidelines for tuned liquid column damper for structures responding to wind", Engineering Structures,  Vol. 27, No. 13, (2005), 1893-1905.

7.     Balendra, T., Wang, C. and Cheong, H., "Effectiveness of tuned liquid column dampers for vibration control of towers", Engineering Structures,  Vol. 17, No. 9, (1995), 668-675.

8.     Gao, H., Kwok, K. and Samali, B., "Optimization of tuned liquid column dampers", Engineering Structures,  Vol. 19, No. 6, (1997), 476-486.

9.     Xue, S., Ko, J. and Xu, Y., "Tuned liquid column damper for suppressing pitching motion of structures", Engineering Structures,  Vol. 22, No. 11, (2000), 1538-1551.

10.   Di Matteo, A., Iacono, F.L., Navarra, G. and Pirrotta, A., "Experimental validation of a direct pre-design formula for tlcd", Engineering Structures,  Vol. 75, No., (2014), 528-538.

11.   Sarma, S., "Geotechnical earthquake engineering, IHE. Vol., No. Issue, (1996).

12.   Gazetas, G., "Seismic soil-structure interaction: New evidence and emerging issues state of the art paper", in Geotechnical Earthquake Engineering and Soil Dynamics Geo-Institute ASCE Conference. Vol., No. Issue, (1998).

13.   Wolf, J.P. and Song, C., "Some cornerstones of dynamic soil–structure interaction", Engineering Structures,  Vol. 24, No. 1, (2002), 13-28.

14.   Sarlak, A., Saeedmonir, H. and Gheyretmand, C., "Numerical and experimental study of soil-structure interaction in structures resting on loose soil using laminar shear box", International Journal of Engineering-Transactions B: Applications,  Vol. 30, No. 11, (2017), 1654-1663.

15.   Xu, Y. and Kwok, K., "Wind-induced response of soil-structure-damper systems", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 43, No. 1-3, (1992), 2057-2068.

16.   Ghosh, A. and Basu, B., "Effect of soil interaction on the performance of tuned mass dampers for seismic applications", Journal of sound and vibration,  Vol. 3, No. 274, (2004), 1079-1090.

17.   Wang, J.-F. and Lin, C.-C., "Seismic performance of multiple tuned mass dampers for soil–irregular building interaction systems", International journal of solids and structures,  Vol. 42, No. 20, (2005), 5536-5554.



















18.   Farshidianfar, A., "Optimized tuned liquid column dampers for earthquake oscillations of high-rise structures including soil effects", International Journal of Optimization in Civil Engineering,  Vol. 2, No., (2012).

19.   Min, K.-W., Kim, Y.-W. and Kim, J., "Analytical and experimental investigations on performance of tuned liquid column dampers with various orifices to wind-excited structural vibration", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 139, No., (2015), 62-69.

20.   Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M., "Response surface methodology: Process and product optimization using designed experiments (wiley series in probability and statistics)", Applied Probability and Statistics,  Vol., No., (1995).

21.   Rocha, M., "The possibility of solving soil mechanics problems by the use of models", in Proc. 4th Int. Conf. on SMFE. Vol. 22, No. Issue, (1957), 183.

22.   Moncarz, P.D. and Krawinkler, H., "Theory and application of experimental model analysis in earthquake engineering, Stanford University California,  Vol. 50,  (1981).

23.   Iai, S., "Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field", Soils and Foundations,  Vol. 29, No. 1, (1989), 105-118.

24.   Meymand, P.J., "Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay",  Vol., No., (1998).

25.   Rayhani, M. and El Naggar, M.H., "Numerical modeling of seismic response of rigid foundation on soft soil", International Journal of Geomechanics,  Vol. 8, No. 6, (2008), 336-346.

26.   Zhu, F., Wang, J.-T., Jin, F. and Lu, L.-Q., "Seismic performance of tuned liquid column dampers for structural control using real-time hybrid simulation", Journal of Earthquake Engineering,  Vol. 20, No. 8, (2016), 1370-1390.


Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir