IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1004-1010    Article in Press

downloaded Downloaded: 0   viewed Viewed: 117

O. Ataee, N. Hafezi Moghaddas, G. R. Lashkaripour and M. Jabbari Nooghabi
( Received: December 31, 2017 – Accepted: March 09, 2018 )

Abstract    Shear wave velocity (VS) is one of the essential parameters for site characterization studies. This study aims to generate reliable equations for estimating VS of top 30 m of soil profile (VS30) in absence of site-specific measurements and investigates the relation between VS and some of the geotechnical properties (e.g. the number of SPT blow counts (N), depth (Z) and VS in the upper layer of soil (VSu) in Mashhad. Group method of data handling (GMDH) type neural network optimized using the genetic algorithm (GA) was used to model these relationships. A database containing 1657 data points compiled from 206 boreholes was used for training and testing of the models. The performance of the proposed correlations compared with the previously published correlations for VS showed a considerable improvement in the prediction of VS. Sensitivity analysis of the obtained models was performed to study the influence of input parameters on model output. Results show that VSu is the most important parameter in predicting VS and SPT is a more effective parameter than depth in predicting VS in coarse- grained soils.


Keywords    Keywords: Shear-Wave Velocity; Standard Penetration Test; Group Method of Data Handling; Sensitivity Analysis; Mashhad city


چکیده    سرعت موج برشی(VS) یکی از پارامترهای اساسی برای مطالعات شناسایی ساختگاه می باشد. هدف این مطالعه، ارائه روابط قابل اعتماد برای پیش بینی سرعت موج برشی در سی متر بالایی پروفیل خاک در نبود آزمایشات خاص ساختگاه و مطالعه رابطه بین سرعت موج برشی و تعدادی از خصوصیات ژئوتکنیکی خاک (از جمله عدد نفوذ استاندارد(N)، عمق(Z) و سرعت موج برشی در لای بالایی هر طبقه از خاک(VSu)) در شهر مشهد می باشد. شبکه عصبی از نوع مدیریت داده ها به روش گروهی(GMDH) بهینه شده به وسیله الگریتم ژنتیک برای مدل سازی استفاده شد. یک مجموعه شامل 1657 جفت داده که از 206 گمانه جمع آوری شده برای آموزش و آزمون مدلها استفاده گردید. عملکرد روابط پیشنهاد شده در مقایسه با روابط پیشنهاد شده قبلی برای سرعت موج برشی، بهبود قابل توجهی در پیش بینی سرعت موج نشان می دهد. آنالیز حساسیت مدلهای بدست آمده برای بررسی تاثیر هر یک از پارامترهای ورودی روی خروجی مدل نیز انجام شد. نتایج نشان داد که VSu مهمترین پارامتر در پیش بینی VS است و SPT در خاکهای درشت دانه پارامتر تاثیرگذارتری نسبت به عمق می باشد.

References    References 1. Akin, M. K., Kramer, S. L., and Topal, T. “Empirical correlations of shear wave velocity (VS) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey)”, EngGeol., 119, 1–17, (2011). 2. Hasancebi, N., & Ulusay, R. “Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments”, Bulletin of Engineering Geology and the Environment. 66, 203–213, (2007). 3. Chatterjee, K., & Choudhury, D. “Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis”, Nat Hazards, 69, PP. 2057–2082, (2013). 4. Dikmen, U. “Statistical correlations of shear wave velocity and penetration resistance for soils”, Journal of Geophysics and Engineering, 6, 61–72, (2009). 5. Maheswari, R. U., Boominathan, A., & Dodagoudar, G. R. “Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils”, Geotechnical and Geological Engineering, 28, 119–137, (2010). 6. Jafari, M. K., Asghari, A., & Rahmani, I. “Empirical correlation between shear wave velocity (Vs) and SPT-N value for south of Tehran soils”. Proceeding of 4th International Conference on Civil Engineering (Tehran, Iran) (in Persian), (1997). 7. Lee, SHH. “Analysis of the multicollinearity of regression equations of shear wave velocities”, Soils and Foundations, 32(1), 205–214, (1992).8. Ohsaki, Y., & Iwasaki, R. “On dynamic shear moduli and Poisson’s ratio of soil deposits”, Soils and Foundations, 13(4), 61–73, (1973). 9. Ohta, Y., & Goto, N. “Empirical shear wave velocity equations in terms of characteristics soil indexes”, Earthquake Engineering and Structural Dynamics, 6, 167–187, (1978). 10. Seed, H. B., & Idriss, I. M. “Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes”, Preprint 81–544, in situ testing to evaluate liquefaction susceptibility, ASCE National Convention, Missouri, 81–544, (1981). 11. Sivrikaya, O. “Comparison of Artificial Neural Networks Models with Correlative Works on Undrained Shear Strength”,  Eurasian Soil Science., 42(13), 1487–1496 Pleiades Publishing, Ltd, (2009). 12. Hanna, A. M., Ural, D., & Saygili, G. “Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data”, Soil Dynamics and Earthquake Engineering, 27(6), 521–540, (2007). 13. Das, S. K., Samui, P., & Sabat, A. K. “Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil”. Geotechnical and Geological Engineering, 29 (3), 329–342, (2011). 14. Khanlari, GR., Heidari, M., Momeni, AA., & Abdilor, Y. “Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods”, Engineering Geology, 131– 132, 11–18, (2012). 15. Rezaee, M.R., Kadkhodaie Ilkhchi, A., & Barabadi, A. “Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia”, Journal of Petroleum Science and Engineering, 55, 201–212, (2007). 16. Goharriz, M. and Marandi, S. M. “Assessment of Lateral Displacement Using Neuro-Fuzzy Group Method of Data Handling Systems” International Journal of Engineering, Transactions B: Applications Vol.28, No.5 (2015), 677-685.  17. Hamedi, A. and Marandi, S., "Laboratory studies on the effect of vertical gravel column drains on liquefaction potential", International Journal of Engineering, Vol. 24, No. 3, (2011). 18. Marandi, S. and Rasti, A., "Parameters analysis of the covering soil of tunnels constructed in liquefiable soils", International Journal of Engineering-Transactions A: Basics, Vol. 25, No. 4, (2012), 333. 19. Mohammadzadeh, S. D., Bolouri Bazaz, J., & Alavi, A. M. “An evolutionary computational approach for formulation of compression index of fine-grained soils”, Engineering Applications of Artificial Intelligence, 33, 58–68. (2014).  doi:10.1016/j. engappai.2014.03.012 20. Onwubolu, G. “GMDH-Methodology and Implementation in C”, World Scientific Publishing Company, (2014). 21. Hild, CH., & Bozdogan, H. “The use of information-based model evaluation criteria in the GMDH algorithm”, System Analysis Modeling Simulation (SAMS), 20, 29-50, (1995).22. Nariman-Zadeh, N., Darvizeh, A., & Ahmad-Zadeh, G. R. “Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217, 779–790, (2003).  doi:10.1243/0954405036067316123. Ardalan, H., Eslami, A., & Nariman-Zadeh, N. “Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms”, Computers and Geotechnics, 36, pp. 616-625, (2009). doi:10.1016/j.compgeo.2008.09.003 24. Kalantary, F., Ardalan, H., & Nariman-Zadeh, N. “An investigation on the Su–NSPT correlation using GMDH type neural networks and genetic algorithms”, Engineering Geology, 104, 144–155, (2009). doi:10.1016/j.enggeo.2008.09.006 25. Mola-Abasi, H., & Shooshpasha, I. “Prediction of Compression Index of Saturated Clays (Cc) Using polynomial models”, scientia iranica, 23 (2), 500-507, (2016).   26. Mola-Abasi, H., Shooshpasha, I., & Amiri, I. “Prediction of Liquefaction Induced Lateral Displacements Using GMDH type Neural Networks”, Global Journal of Scientific Researches, 2(1), 21-26, (2014). 27. Imai, T. “P- and S-wave velocities of the ground in Japan”. In: Proceedings of the IX, international conference on soil mechanics and foundation engineering, 127–132, (1977). 28. Iyisan, R., “Correlations between shear wave velocity and in-situ penetration test results”. Chamber of Civil Engineers of Turkey. Teknik Dergi ,7 (2), 1187–1199, (1996). 29. Hafezi M. N., Azadi, A., & Amanian, M. “Assessment of shear wave velocity based on standard penetration and accuracy of the results in the range of Mashhad City”, Paper presented at 4th Conference of Iran Geophysics, Geophysical Institute (In Persian), (2010). 30. Fatehnia, M., Hayden, M., & Landschoot, M. “Correlation between shear wave velocity and SPT-N values for north Florida soils”, Electronic Journal of Geotechnical Engineering, 20, Bund. 22, (2015). 31.  Kirar, B., Maheshwari, B.K., & Muley, P. “Correlation between shear wave velocity (VS) and SPT resistance(N) for Roorkee region”, International Journal of Geosynthetics and Ground Engineering, 2(9), (2016). DOI 10.1007/s40891-016-0047-5.  32. Nabavi, M. H. “An introduction to the Iranian geology”, Geological Survey of Iran, ll0 p (In Persian), (1976). 33.Building & housing research center. Iranian code of practice for seismic resistant design of buildings, standard No. 2800, 3rd edition, Tehran, Iran, (2007). 34. Ivakhnenko, A. G. “Polynomial theory of complex systems. Systems, man and cybernetics”, IEEE Transactions on SMC, pp. 364–378, (1971). doi:10.1109/TSMC.1971.4308320 35. Madala, H. R., & Ivakhnenko, A.G. “Inductive Learning Algorithms for Complex Systems Modeling”, CRC Press, ISBN: 0-8493-4438-7, (1994). 36. Farlow S. J. “Self-organizing method in modelling: GMDH type algorithm”, Marcel Dekker Inc, (1984). 37. Momeni, M., Nazir, R., Jahed Armaghani, D., & Maizir, H. “Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN”, Measurement, 57, 122–131, (2014).  doi:10.1016/j.measurement.2014.08.007

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir