Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 1302-1310   

downloaded Downloaded: 0   viewed Viewed: 133

  EXPERIMENTAL AND NUMERICAL INVESTIGATIONS ON AL2O3 TRICOSANE BASED HEAT PIPE THERMAL ENERGY STORAGE
 
K. Jogi, K. P. S., B. Solomon A. and V. K. Sharma
 
( Received: October 25, 2017 – Accepted: March 09, 2018 )
 
 

Abstract    The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work, Al2O3 – Tricosane based Phase Change-Materials(PCM) are used as energy storage materials to study the effects of employment of, in the heat pipe for electronic cooling applications are investigated experimentally and numerically. The Al2O3 – Tricosane based PCM is employed in the adiabatic section of the heat pipe. Tricosane (organic compound) is chosen as PCM for the present study, where Al2O3 nanoparticles are dispersed in PCM by an ultrasound mechanism with volume fractions of 0.5%, 1% and 2%.Transient thermal behavior of the evaporator, energy storage materials and condenser are studies during the charging process with heating powers of 13W, 18W and 23W. It is observed that the employment of PCM improves the performance of heat pipe. The performance of system with Tricosane with nanoparticles improves for 1% concentration and reduced for 2% concentration, which concludes for the optimized doping of nanoparticles. Finally, the experimental and numerical results are compared at various operating conditions to establish correlation between them. The numerical results observed to match closely with experimental results.

 

Keywords    Electronic cooling devices, phase change materials, Nanoparticles, Heat pipe, Thermal Energy storage

 

چکیده    افزایش چرخه عمر عملیاتی دستگاه های الکترونیکی، توسعه تکنیک های خنک کننده کارآمد را ضروری می سازد. بنابراين، در مقاله حاضر، مواد آلياژ فازي مبتني بر آلياژ 3-تيروزين (PCM) به عنوان مواد ذخيره سازي انرژي براي بررسي تأثير اشتغال در لوله هاي حرارتي براي کاربردهاي خنك كننده هاي الكتريكي به صورت تجربي و عددي مورد بررسي قرار مي گيرند. PCM مبتنی بر Al2O3 - Tricosane در بخش آدیاباتیک لوله گرما استفاده می شود. تریکوزان (ترکیب ارگانیک) به عنوان PCM برای مطالعه حاضر انتخاب شده است، در حالیکه نانوذرات آلومینیوم در PCM با استفاده از یک مکانیزم اولتراسوند با قطرهای حجمی 0.5٪، 1٪ و 2٪ پراکنده می شوند. رفتار حرارتی انتقال اواپراتور، مواد ذخیره سازی انرژی و کندانسور مطالعات در طول فرآیند شارژ با قدرت های گرم 13W، 18W و 23W انجام می شود. مشاهده شده است که استخدام PCM باعث بهبود عملکرد لوله گرما می شود. عملکرد سیستم با تریکوسن با نانوذرات بهبود یافته برای غلظت 1٪ و برای غلظت 2٪ کاهش می یابد که نتیجه آن دوپینگ نانوذرات است. در نهایت، نتایج آزمایشگاهی و عددی در شرایط عملیاتی مختلف برای ایجاد همبستگی بین آنها مقایسه می شود. نتایج عددی مشاهده شده است که با نتایج تجربی مرتبط است.

References    [1]. G. Casano and S. Piva, Experimental and numerical investigation of a phase change energy storage system, J. of Phys: Conference Series.501 (2014) 012012. [2]. R.K. Sharma, P.Ganesan, V.V.Tyagi, H.S.C. Metselaar, S.C.Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers Manage. 2015; 95:193–228. [3]. N.H.S.Tay, F.Bruno, M.Belusko, Experimental investigation of dynamic melting in a tube-in-tank PCM system, Appl Energy. 2013; 104: 137–148. [4]. Zalbaet Belen, M.Jose M, F.Cabeza Luisa, M.Harald, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng. 23 (2003) 251–283. [5]. L.Arulmurugan, M. Ilangkumaran, K.Vishnu Prakash, Experimental Investigation on Thermal Performance and Effect of PCM based Heat Sink with Different Fins, IOSR J. of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278 1684, p-ISSN: 2320-334XPP 29-33. [6]. S.S.Sebti , S.H. Khalilarya , I. Mirzaee , S.F. Hosseinizadeh , S. Kashani , M.Abdollahzadeh, A Numerical Investigation of Solidification in Horizontal Concentric Annuli Filled with Nano-Enhanced Phase Change Material (NEPCM). World Appl Sci J. 2011; 13 (1): 09-151818-4952. [7]. A.Valan Arasu, P.Sasmitob Agus, S.Mujumdar Arun. Thermal performance enhancement of paraffin wax with AL2O3 and Cuo nanoparticles – a numerical study. Frontiers in heat and mass trans. 2011; 2: 043005.  [8]. Li-Wu Fan , Yu-Qi Xiao , Yi Zeng , Xin Fang , Xiao Wang , Xu Xuc, Zi-Tao Yu , Rong-Hua Hong ,Ya-Cai Hua, Ke-Fa Cen. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink. Int J Therm Sci 2013; 70: 114-126. [9]. A.T. Pise, A.V. Waghmare and V.G. Talandage, Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System, Asian J. of Eng and Appl Technol, ISSN 2249-068X Vol. 2 No. 2, 2013, pp. 52-57 [10]. Ahmet Sarı, Ali Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl Therm Eng. 27 (2007) 1271–1277. [11]. M. Ahmadzadehtalatapeh, Y. H. Yau, Energy Conservation Potential of the Heat Pipe Heat Exchangers: Experimental Study and Predictions, IJE Transactions B: Applications Vol. 25, No. 3, (August 2012) 193-199. [12]. E. Azad, Interconnected heat pipe solar collector, IJE Transactions A: Basics: Vol. 22, No. 3, September (2009) 233-242. [13]. S. Nabeel Dhaidan, J.M. Khodadadi, A.Tahseen. Al-Hattab, Saad M. Al-Mashat, Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity, Int J. of Heat and Mass Transf. 67 (2013) 455–468. [14]. Xiaohong Gui, Bin Lin,  Yongxian Guo,  Xiugan Yuan, Two-dimensional transient thermal analysis of PCM canister of a heat pipe receiver under microgravity, Appl Therm Eng. 312011,5, 735-741. [15]. C.Y Tsaia, H.T Chiena, P.P Dingb, B.Chanc, T.Y Luhd, P.H Chena, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater Letters. 2004; 58:1461–1465.  [16] S.F Hosseinizadeh, A.A Rabienataj Darzi, F.L Tan, Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012; 51: 77-83. [17] Bogdan Horbaniuc, Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system, Energy Convers and Manage 1999; 40(15):1765-1774·  [18]. Z. H Liu, X. F Yang, and G. L Guo, Effect of Nanoparticles in Nanofluid on Thermal Performance in a Miniature Thermosyphon, J. Appl. Phys. 102(1) 2007 p 013526. [19]. S. H Noie, S Zeinali Heris,M Kahani, and S. M Nowee, Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon, Int. J. Heat Fluid Flow, 30(4), 2009,pp. 700–705. [20]. K.Jahani, M. Mohammadi,M. B Shafii, and Z. Shiee, Promising Technology for Electronic Cooling Nanofluidic Micro Pulsating Heat Pipes, ASME J. Electron. Packag. 135(2) 2013 p. 021005. [21]. R. Boukhanouf, A. Alharbi, O. Amer, and H. G. Ibrahim, Experimental and Numerical Study of a Heat Pipe Based Indirect Porous Ceramic Evaporative Cooler, Int. J of Environmental Sci and Development, Vol. 6, No. 2, February 2015. [22] Che Weng-Ying, Pin Cho-Hung, Chung Chang- Chih, Li Chen- Sih, Heat pipe with PCM for electronic cooling,  Appl Energy, 88, 1825–1833, 2011. [23]. S.K Sahu, S.Chougule Sandesh, Thermal Performance of Nanofluid Charged Heat Pipe With Phase Change Material for Electronics Cooling, J. of electronic packaging., 137: 021004-7, 2015. [24]. J.Krishna,P.S Kishore, A. Brusly Solomon, Heat pipe with nano enhanced-PCM for electronic cooling application,  Experimental Therm and Fluid Sci., 81, 84–92, 2017. [25]. L.C. Chow L.C, J.K Zhong, Thermal conductivity enhancement for phase change storage media, Int Commun Heat Mass Transf 1996; 23: 91–100. [26]. R.S Vajjha, D.K Das, P.K Namburu, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Int J of Heat Fluid Flow 2010;31: 613–621. [27].  C.J. Ho, J.Y. Gao, Preparation and thermo-physical properties of nano-particle in paraffin   emulsion as phase change material, Int. Commun. Heat Mass Transf. 36 (5) (2009) 467–470. [28].A.V. Arasu, A.P. Sasmito, A.S. Mujumdar, Thermal performance enhancement of paraffin wax with Al2O3 and CuO nano-particles – a numerical study, Front. Heat Mass Transf. (FHMT) 2 (2011) 043005.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir