IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 1266-1274   

downloaded Downloaded: 0   viewed Viewed: 121

M. Ebrahimi, R. Tavakkoli-Moghaddam and F. Jolai
( Received: September 18, 2017 – Accepted: January 04, 2018 )

Abstract    Taking into account competitive markets, a manufacturer attends customer’s personalization more. Accordingly, build-to-order systems have been given more attention in recent years. This paper introduces a new build-to-order problem in the supply chain. This study focuses on both manufacturer's profit and customer's utility simultaneously where demand is dependent on customer's utility. The customer's utility is a behavior based upon utility function that depends on quality and price and customer's preferences. The new bi-objective problem is a multi-period, multi-product and three-echelon supply chain to increase manufacturer's profit and customer's utility simultaneously. GAMES software is used to verify the model while encountering with small-sized problems. Solving the complicated problem, two multi-objective meta-heuristics, namely non-dominated ranked genetic algorithm (NRGA) and non-dominated sorting genetic algorithm (NSGA-II), are used to solve the given problem. Finally, the outcomes obtained by these meta-heuristics are compared and analyzed.


Keywords    Build-to-order; Bi-objective model; Supply chain; Customer utility; Multi-objective meta-heuristics.


چکیده    در این مقاله، به بررسی مسئله طراحی شبکه زنجیره تامین ساخت بر اساس سفارش پرداخته می­شود. از آنجایی که در این سیستم­ها مشتری جایگاه ویژه­ای دارد بنابراین در این مقاله مدل دو هدفه­ای ارائه می­شود که مشتمل بر حداکثرسازی مطلوبیت مشتری و حداکثرسازی سود تولیدکننده می­باشد به طوری که تقاضا وابسته به مطلوبیت مشتری است. مطلوبیت مشتری تابعی از قیمت و کیفیت ترجیحات مشتری است. مدل جدید دو هدفه ارائه شده، چند دوره­ای، چند محصولی و چند سطحی می­باشد که با نرم افزار GAMSE در ابعاد کوچک به حل آن پرداخته می­شود. سپس مسائل با ابعاد بزرگ با استاده از دو روش فرابتکاری مورد حل قرار می­گیرند.

References      Che, Z. H., Chiang, C. J., A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software. 2010. 41: P. 1011–1022.Yimer, A. D., Demirli, k., A genetic approach two-phase optimization of dynamic supply chain scheduling. Computer & Industrial Engineering. 2010. 58: P. 411-422. Sharma, A., Laplac, P., Marketing in the emerging era of build to order manufacturing. Industrial Marketing Management. 2005. 34: P. 476-486.Schmidt, M., Schafers, P., The Hanoverian Supply Chain Model: modelling the impact of production planning and control on a supply chain’s logistic objectives. Production Engineering: Research and Development. Article in Press. 2017.Shi, J., Zhang, G., Sha, J.,  A Lagrangian based solution algorithm for a build-to-order supply chain network design problem. Advances in Engineering Software. 2012. 49: p. 21–28.Lin, C. C., Wu, Y. C.,  Optimal pricing for build-to-order supply chain design underprice-dependent stochastic demand. Journal of Transportation Research - Part B. 2013. 56: p. 31–49. Lalmazloumian, M., Wong, K. Y., Govindan, K., Kannan, D., A robust optimization model for agile and build-to-order supply chain planning under uncertainties.  Annals of Operation Research. 2013. 240: p. 435-470.Haq, A. N., Kannan, G., Design of an integrated supplier selection and multi-echelon distribution inventory model in a built-to-order supply chain environment. International Journal of Production Research. 2006. 44: p. 1963-1985.Nugroho, Y. K., Production ramp up in builttoorder supply chains. Journal of Modeling in Management. 2011. 6: p. 143-163.Miemczyk, J., Howard, M., Supply strategies for buildtoorder: managing global auto operations. Journal of Supply Chain Management. 2008. 13:p. 3-8.Lyons, A., Coronado, A., Michaelides, Z., The relationship between proximate supply and buildtoorder capability. Industrial Management & Data Systems. 2006. 106:1095-1111.Joshi, K., Singh, K. N., Kumar, S.,  Twosided suppliermanufacturer selection in BTO supply chain. Journal of Modeling in Management. 2012. 7: p. 257-273.Howard, M., Miemczyk, J., Graves, A., Automotive supplier parks: An imperative for build- to-order?. Journal of Purchasing and Supply Management. 2006. 12: p. 91-104. Nowitzki, C. E.,  Improving value chain flexibility and adaptability in build-to-order environments. Journal of Physical Distribution & Logistics Management. 2012. 42: p. 318-37. Coronado, A. E., Andrew, M., Lyons, C., Evaluating operations flexibility in industrial supply chains to support buildtoorder initiatives. Business Process Management Journal. 2007.13:572-587. Salvador, F., Rungtusanatham, M., Forza, C., Trentin, A., Mix flexibility and volume flexibility in a buildtoorder environment: Synergies and tradeoffs. Operations &Production Management. 2007. 27:1173-1191.Chow, H. K. H., Choy, K. L., Lee, W. B., Knowledge management approach in buildtoorder supply chains. Journal of Industrial Management & Data Systems. 2007. 107:882-919. SharifA, M., Irani, Z., Lloyd, D., Information technology and performance management for buildtoorder supply chains. International Journal of Operations & Production Management. 2007. 27:1235-1253.Christensen, W. J., Germain, R., Birou, L., Build-to-order and just-in-time as predictors of applied supply chain knowledge and market performance. Journal of Operations Management. 2005. 23:470–481. Mukhopadhyay, S. K., Setoputro, R., Optimal return policy and modular design for build-to-order products. Journal of Operations Management. 2005. 23:496-506. Konstantaras, I., Skouri, K., Papachristos, S., Optimal pricing, return and modular design policy for build-to-order (BTO) products in a two parties supply chain system. IMA Journal of Management Mathematics. 2009. 1-12. Demirli, K., Yimer, A. D., Fuzzy scheduling of a build-to-order supply chain. Journal of Production Research 2008. 46:3931–3958. Lalmazloumian, M, Wong, K. Y., Ahmadi, M., A mathematical model for supply chain planning in a build-to-order environment. Springer International Publishing Switzerland. 2014. 315-320.Lin, C. C., Wang, T. H., Build-to-order supply chain network design under supply and demand uncertainties. Journal of Transportation Research - Part B. 2011. 45:1162–1176. Li, M., Feng, H., Chen, F., Kou, J.,  Optimal versioning strategy for information products with behavior-based utility function of heterogeneous customers. Computer & Operations Research. 2013. 40:2374-2386. Chan, F. T. S., Jha A., Tiwari, M. K., Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with heuristics algorithm. Applied Soft Computing. 2016. 38:978-987. Zhang, R., Chiong, R., Solving the energy-ecient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production. 2016. 112:3361-3375.Pasandideh, S. H. R., AkhavanNiaki, S. T., Asadi, K.  Bi-objective optimization of a multi-product, multi-period three-echelon supply chain problem under uncertain environments: NSGA-ǁ and NRGA. Information Sciences. 2015. 292:57-74.Maghsoudlou, H., RashidiKahag, M., AkhavanNiaki, S. T., Pourvaziri, H.,  Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: modeling and solution. Computers & Industrial Engineering. 2016. 99:41-62. Mousavi, S. M., Sadeghi, J., AkhavanNiaki, S. T., Tavana, M., A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA and MOPSO. Applied Soft Computing. 2016. 43:57-72. Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S. M., A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Computers and Operations Research. 2016. 73:56-66. Hassanzadeh, A, Rasti-Barzoki, M, Khosroshahi, H., Two new meta-heuristics for a bi-objective supply chain scheduling problem in flow shop environment. Applied Soft Computing. 2016. 49:335-351. Noroozi, A., Mahdavi Mazdeh, M., Noghondarian, K., Rasti-Barzoki, M., Heydari, M., (2017) “Evolutionary computation algorithms to coordinating order acceptance and batch delivery for an integrated supply chain scheduling” Computational Applied Mathematics, Article in Press.Jalali, S., Seifbarghy, M., Sadeghi, J., Ahmadi, S., Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms. Knowledge-Based Systems. 2016. 95:45-57. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir