IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 863-869   

PDF URL: http://www.ije.ir/Vol31/No6/C/1-2809.pdf  
downloaded Downloaded: 213   viewed Viewed: 882

H. Bakhshi, A. Dehghani and S. Jafaripanah
( Received: November 01, 2017 – Accepted in Revised Form: February 08, 2018 )

Abstract    In this paper, a genetic algorithm (GA) has been used to predict the vapor pressure of pure organic compounds based on Riedel equation. Initially, the coefficients of Riedel equation were optimized. Then, a new term was added to the original Riedel equation to reduce error of the model in prediction of vapor pressures of pure materials. 110 components at two different pressures (10 and 100 kPa) were chosen to investigate the capability of mentioned models. Absolute average relative deviation percent (AARD %) was reported for 40 components as testing materials to compare the calculated results of two models with experimental data. Results showed that the exerted modification on Riedel equation decreases the errors in prediction of vapor pressures of chemical components.


Keywords    Genetic Algorithm, Vapor Pressure, Riddle Equation, Clapeyron, Optimization


چکیده    در این مقاله از الگوریتم ژنتیک برای پیش بینی فشار بخار ترکیبات آلی خالص بر پایه معادله ریدل استفاده شده است. در این کار ابتدا با انتخاب 110 ماده مختلف به بهینه سازی ضرایب معادله ریدل برای کاهش خطای ناشی از این روش در پیش بینی فشار بخار برای فشارهای 100 و 10 کیلوپاسکال پرداخته شده است. همچنین با افزایش یک ترم به معادله اصلی و ارائه معادله کلی جدید بر پایه روش ریدل، خطای ناشی از پیش بینی مقدار فشار بخار برای فشارهای100 و 10 کیلوپاسکال، کاهش داده شده است. پس از مشخص شدن معادله بهینه و معادله جدید، دقت معادلات با بررسی خطای حاصل از 40 ترکیب مختلف سنجیده شد. نتایج نشان داد که اصلاح اعمال شده بر معادله ریدل، خطاهای پیش بینی فشار بخار ترکیبات شیمیایی را کاهش می دهد.


1.     Smith, J.M., Introduction to chemical engineering thermodynamics. 1950, ACS Publications.

2.     Antoine, C., "Thermodynamic vapor pressures: New relation between the pressures and the temperatures (thermodynamique, tensions des vapeurs: Novelle relation entre les tensions et les temperatures)", CR Hebd. Seances Acad. Sci,  Vol. 107, No. 681, (1888), 836.

3.     Cox, E.R., "Pressure-temperature chart for hydrocarbon vapors", Industrial & Engineering Chemistry,  Vol. 15, No. 6, (1923), 592-593.

4.     Wagner, W., "New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations", Cryogenics,  Vol. 13, No. 8, (1973), 470-482.

5.     Ambrose, D. and Ghiassee, N., "Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to c10", The Journal of Chemical Thermodynamics,  Vol. 19, No. 5, (1987), 505-519.

6.     Plank, R. and Riedel, L., "A new criterion for the curves of the vapor pressure at the critical point", Ing. Arch,  Vol. 16, (1948), 255-266.

7.     Riedel, L., "Eine neue universelle dampfdruckformel untersuchungen über eine erweiterung des theorems der übereinstimmenden zustände. Teil i", Chemie Ingenieur Technik,  Vol. 26, No. 2, (1954), 83-89.

8.     Vetere, A., "The riedel equation", Industrial & Engineering Chemistry Research,  Vol. 30, No. 11, (1991), 2487-2492.


9.     Vetere, A., "Again the riedel equation", Fluid phase Equilibria,  Vol. 240, No. 2, (2006), 155-160.

10.   Olsen, E. and Nielsen, F., "Predicting vapour pressures of organic compounds from their chemical structure for classification according to the vocdirective and risk assessment in general", Molecules,  Vol. 6, No. 4, (2001), 370-389.

11.   Velasco, S., Roman, F., White, J. and Mulero, A., "A predictive vapor-pressure equation", The Journal of Chemical Thermodynamics,  Vol. 40, No. 5, (2008), 789-797.

12.   Gandhidasan, P. and Mohandes, M.A., "Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks", Applied Thermal Engineering,  Vol. 28, No. 2-3, (2008), 126-135.

13.   Rohani, A.A., Pazuki, G., Najafabadi, H.A., Seyfi, S. and Vossoughi, M., "Comparison between the artificial neural network system and saft equation in obtaining vapor pressure and liquid density of pure alcohols", Expert Systems with Applications,  Vol. 38, No. 3, (2011), 1738-1747.

14.   Honarmand, M., Sanjari, E. and Badihi, H., "Prediction of saturated vapor pressures using non-linear equations and artificial neural network approach", Journal of Mathematics and Computer Science,  Vol. 8, (2014), 343-358.

15.   Roganov, G., Garist, I., Garist, E. and Stepurko, E., "Calculating the vapor pressure of aliphatic hydrocarbons by additive methods and determining their critical parameters on this basis", Russian Journal of Physical Chemistry A,  Vol. 89, No. 10, (2015), 1726-1731.

16.   Hogge, J.W., Giles, N.F., Knotts, T.A., Rowley, R.L. and Wilding, W.V., "The riedel vapor pressure correlation and multi-property optimization", Fluid Phase Equilibria,  Vol. 429, (2016), 149-165.

17.   Hogge, J.W., Giles, N.F., Rowley, R.L., Knotts IV, T.A. and Wilding, W.V., "New vapor-pressure prediction with improved thermodynamic consistency using the riedel equation", Industrial & Engineering Chemistry Research,  Vol. 56, No. 49, (2017), 14678-14685.

18.   Tillner-Roth, R., "A nonlinear regression analysis for estimating low-temperature vapor pressures and enthalpies of vaporization applied to refrigerants", International Journal of Thermophysics,  Vol. 17, No. 6, (1996), 1365-1385.

19.   Ewing, M.B. and Ochoa, J.C.S., "Vapour pressures of n-hexane determined by comparative ebulliometry", The Journal of Chemical Thermodynamics,  Vol. 38, No. 3, (2006), 283-288.

20.   King, M. and Al-Najjar, H., "A method for correlating and extending vapour pressure data to lower temperatures using thermal data: Vapour pressure equations for some n-alkanes at temperatures below the normal boiling point", Chemical Engineering Science,  Vol. 29, No. 4, (1974), 1003-1011.

21.   Poling, B.E., "Vapor pressure prediction and correlation from the triple point to the critical point", Fluid Phase Equilibria,  Vol. 116, No. 1-2, (1996), 102-109.

22.   Medeiros, M., Armas-Alemán, C.O., Costas, M. and Cerdeirina, C.A., "Temperature dependence of the heat capacity and vapor pressure of pure self-associated liquids. A new correlation based on a two-state association model", Industrial & Engineering Chemistry Research,  Vol. 45, No. 6, (2006), 2150-2155.

23.   Carruth, G.F. and Kobayashi, R., "Extension to low reduced temperatures of three-parameter corresponding states: Vapor pressures, enthalpies and entropies of vaporization, and liquid fugacity coefficients", Industrial & Engineering Chemistry Fundamentals,  Vol. 11, No. 4, (1972), 509-517.

24.   Zhang, Y., "An improved qspr study of standard formation enthalpies of acyclic alkanes based on artificial neural networks and genetic algorithm", Chemometrics and Intelligent Laboratory Systems,  Vol. 98, No. 2, (2009), 162-172.

25.   Whitley, D., Starkweather, T. and Bogart, C., "Genetic algorithms and neural networks: Optimizing connections and connectivity", Parallel Computing,  Vol. 14, No. 3, (1990), 347-361.

26.   Gosselin, L., Tye-Gingras, M. and Mathieu-Potvin, F., "Review of utilization of genetic algorithms in heat transfer problems", International Journal of Heat and Mass Transfer,  Vol. 52, No. 9-10, (2009), 2169-2188.

27.   Hwang, S.-F. and He, R.-S., "Improving real-parameter genetic algorithm with simulated annealing for engineering problems", Advances in Engineering Software,  Vol. 37, No. 6, (2006), 406-418.

28.          Poling, B.E., Prausnitz, J.M., John Paul, O.C. and Reid, R.C., "The properties of gases and liquids, Mcgraw-hill New York,  Vol. 5,  (2001).

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir