Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 31, No. 10 (October 2018) 684-693   

downloaded Downloaded: 0   viewed Viewed: 972

  FORMULATION OF AN EXPLICIT NUMERICAL APPROACH FOR A LARGE NUMBER OF CYCLES
 
A. Moussa and M. Salah
 
( Received: June 19, 2017 – Accepted: March 09, 2018 )
 
 

Abstract    The prediction of the response of geotechnical structures under cyclic loading is difficult. Numerically, such a prediction proves problematic because even small systematic errors of constitutive models are quickly accumulated. Our objective is the prediction of the response of geotechnical constructions under cyclic loading with a large number ( ) of cycles by using an explicit approach for this purpose. The formulation of this model is based on numerous cyclic tests drained. The reliability of model is tested with experimental values. Good correlation exists between predicted and experimental response.The second section is devoted to the parametric study of the proposed formulation. We are essentially interested in the influence of the cyclic parameters on the evolution of the accumulated irreversible strain.

 

Keywords    Triaxial drained; Cyclic loading; Accumulation; Pseudo cyclic creep model; J.Lemaitre model.

 

References    1. A. Niemunis, T. Wichtmann, and T. Triantafyllidis, “A high-cycle accumulation model for sand”.Comput. Geotech. Vol. 32, (2005), 245.   2. Boulon M., Puech A, “ Simulation numérique du  comportement des pieux sous chargement axial  cyclique”, Revue Française de Géotechnique, Vol.   26,(1984), 7-20.   3. Boukovalas G., Whitman R. V., Marr W. A., “Permanent  Displacement of Sand with cyclic Loading”. Journal of Geotechnical Engineering, ASCE, 110, Vol.11, (1984),  1606-1623.   4. Cao J., Mroueh H. and Burlon S., “Skipped cycles  method for geotechnical structures under large number of cycle loads”. Offshore Site inv. & Geot., SUT, London,   (2012).   5. David Mašín, PhD “Hypoplasticity for Practical Applications Part 4: Determination of  material  parameters course on hypoplasticity Zhejiang  University, (June 2015)”.   6. Diyaljee, V. A., Raymond, G. P., 1982. “Repetitive Load  Deformation of Cohesionless Soil”. Journal of the Soil Mech. & Found. Eng. Div., ASCE, GT 10, (1982), 1215-  1229.   7. Gotschol A., “Veränderlich elastisches und plastisches  Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung”. Schrif-tenreihe   Geotechnik, Universität Gh Kassel, Heft 12, (2002).   8. G. Gudehus, A. Amorosi, A. Gens, I. Herle, D. Kolymbas, D. Masın, D. Muir Wood, R. Nova,  A.Niemunis, M. Pastor, C. Tamagnini, and G. Viggiani.,  “The soilmodels.info project”. International Journal for   Numerical and Analytical Methods in Geomechanics,   Vol.32(12), (2008), 1571-1572, [Letter PDF].   9. J. Helm, J. Laue, and T. Triantafydillis, Untersuchungen  an der RUB zur  Verformungsentwicklung von B, “oden  unter zyklischen Beanspruchungen, in Boden unter fast  zyklischer Belastung Erfahrungen und   Forschungsergebnisse”, edited by T. Triantafyllidis   (Bochum, 2000), 109–133.   10. J.Lemaitre and J-L Chaboche., “Mécanique des  matériaux solides”, Dunod, 1996, 253- 341.   11. Kaggawa W. S., Booker J. R. and Carter J. P.,  “Residual Strains in Calcareous Sand due to Irregular Cyclic Loading”, Journ. of Geotech. Eng., ASCE,   Vol.117( 2), (1991), 201-218.   12. Niemunis A, Wichtmann T, Petryna Y, Ttiantafyllidis  T., “Stochastic modelling of  settlements due to cyclic  loading for soil–structure interaction”. In: Structural   safety and reliability, 9th international conference,   (2005), ICOSSAR.   13. Niemunis A., “Extended hypoplastic models for soils”.  Ruhr-University Bochum, Institute of Soil Mechanics  and Foundation Engineering, 2003. 34, available from   www.pg.gda.pl/~aniem/an-liter.html.   14. Niemunis A, Herle I., “Hypoplastic model for  cohesionless soils with elastic strain range”, Mechanics   of CohesiveFrictional Materials , Vol.2, (1997), 279–299.   15. Papon A., “Modélisation numérique du comportement  des sols sous très grand nombre de cycles”.  Homogénéisation temporelle et identification des  paramètres. Thèse, Ecole Centrale de Nantes, (2010).   16. Plaxis., essential for geotechnical professionals,  “Material Models Manual”, (2010).   17. T. Wichtmann., “Explicit accumulation model for non-  cohesive soils under cyclic loading”, Ph.D. thesis  (2005).   18. Thanopoulos I., “Contribution à  l’étude du  comportement cyclique des milieux  pulvérulents”.  Thèse, Université Scientifique et médicale & l’institut  national  polytechnique de Grenoble, (1981).   19. Wichtmann, T., “Explicit Accumulation Model for   Non-Cohesive Soils under Cyclic Loading”. In Th.Triantafyllidis (Ed.), Schriftenreihe des Institutes für  Grundbau und Bodenmechanik der Ruhr-Universität         Bochum, Heft, 38, (2005).   20. Wichtmann T, Niemunis A, Ttiantafyllidis T., “Strain  accumulation in sand due to cyclic loading: drained cyclic tests”. Soil Dyn Earthq Eng, Vol.25, (2005),967–  979.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir