IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1389-1397    Article in Press

PDF URL: http://www.ije.ir/Vol31/No8/B/30-2797.pdf  
downloaded Downloaded: 18   viewed Viewed: 385

( Received: December 14, 2017 – Accepted: February 20, 2018 )

Abstract    Currently, exchanging trends in the expensive usage of ceramic materials such as alumina, zirconia etc. into economical ceramic raw sources have been studied extensively over the last decade for various technological applications. Despite the fact that this ceramic compound or elements offer a great performance and stability, especially at high temperature and corrosive or acidic conditions, the basic commercial price of this compound which is a little bit higher have hindered the used of these materials. Thus interest in fabricating of bio-ceramic membrane using corn cob ash, an agricultural by product not only offered the development of new low cost materials but also able to enhance better properties and performance. The suitability of corn cob ash as an alternative material for ceramic hollow fiber membrane fabrication (CHFM/CCA) as a main substrate was investigated via combined phase inversion and sintering technique based on several controlled operating parameters. The effects of selected bore fluid (5, 10, 15 and 20 mL/min) and different sintering temperature (800˚C, 900˚C, 1000˚C, 1100˚C) towards membrane structure and properties were observed and studied. Interestingly, analysis of the SEM morphology showed that the potential of the main constituents of corn cob ash which highly consisted of silica, alumina and calcium oxide are able to improve the properties of CHFM/CCA by lowering sintering temperature (1000˚C) as compared to the standard CHFM bodies which normally has sintering temperature higher than 1200 ºC. Thus, the used of corn cob ash not only able to enhance better ceramic properties but also able to reduce sintering temperature. Reduction in energy consumption with slightly reduced sintering temperature also will offer a better sustainable process through recycling abundant waste materials as well as the emphasis on the green resources. In respect, the bio-material of corn cob ash is capable to replace the commercial ceramic membrane materials for membrane applications by considering the availability of this agro waste product as the main crops in most countries in the world.


Keywords    green corn cob ash, ceramic hollow fiber membrane, reduced sintering temperature



اخیرا، روند استفاده از مواد سرامیکی گران قیمت مانند آلومینا، زیرکونیا و غیره که در دهه گذشته برای کاربرد های مختلف فن آوری مورد مطالعه قرار می‌ گرفته است ، به منابع خام سرامیکی مقرون به صرفه تغییر یافته است. با وجود این که این ترکیب سرامیکی یا عناصر عملکرد خوب و ثابتی را به ویژه در دمای بالا ارائه میدهند، قیمت پایه تجاری و درجه حرارت بالای پخت این ترکیبات که کمی بالاتر است، مانع استفاده از این مواد شده است. بنابراين علاقه به ساخت غشای بيومتري سرامیکی با استفاده از ضایعات کشاورزی خاکسترچوب ذرت ، نه تنها توسعه مواد جديد کم هزینه را ارائه می دهد، بلکه قادر به بهبود خواص و عملکرد آنها نیز می باشد. مناسب بودن خاکستر ذرت به عنوان یک ماده جایگزین برای تولید غشای فیبر توخالی سرامیکی (CHFM / CCA)به عنوان یک بستر اصلی، از طریق روشهای مختلف پخت و فازی معکوس بر اساس چند پارامتر عملیات کنترل شده مورد بررسی قرار گرفته است. اثرات فلوید بور انتخاب شده (۵،۱۰،۱۵ و ۲۰ میلی لیتر در دقیقه) و دمای پخت متفاوت (۸۰۰، ۹۰۰، ۱۱۰۰ درجه سانتیگراد) به ساختار و خواص غشا مشاهده و مطالعه شده است. جالب توجه است که ، تجزیه و تحلیل مورفولوژی SEM نشان میدهد که پتانسیل اجزای اصلی خاکستر ذرت که از سیلیس، آلومینا و اکسید کلسیم تشکیل شده است قادر به بهبود خواص CHFM / CCA با کاهش درجه حرارت پخت ۱۰۰۰ درجه سانتیگراد در مقایسه با استاندارد CHFM که به طور معمول دارای دمای پخت بالاتر از ۱۲۰۰ درجه سانتیگراد است. بنابراین، استفاده از خاکستر ذرت نه تنها قادر به بهبود خواص سرامیکی بهتر بلکه قادر به کاهش درجه حرارت پخت است. کاهش مصرف انرژی با کاهش دمای پخت و نیز پایداری بهتر فرآیند را از طریق بازیافت مواد زائد و تأکید بر منابع سبز ارائه می دهد. با توجه به دسترسی این ضایعات زراعی کشاورزی به عنوان محصولات اصلی در اکثر کشورهای جهان ، مواد زیستی خاکستر ذرت قادر به جایگزینی مواد غشایی سرامیکی تجاری برای کاربردهای غشایی هستند.

References    1. Finnigan, T. and Skudder, P., “Using ceramic microfiltration for the filtration of beer and recovery of extract”, Filtration & separation, Vol. 29, No. 3, (1989), 198-200. 2. David, C., Arivazhagan, M., and Ibrahim, M., "Spent wash decolourization using nano-Al2O3/kaolin photocatalyst: Taguchi and ANN approach", Journal of Saudi Chemical Society, Vol. 19, No. 5, (2015), 537-548. 3. Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A., Rahman, M. A., and Jaafar, J., "A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal." Ceramics International, Vol. 43, No. 5, (2017), 4716-4720. 4. Abdulhameed, M. A., Othman, M. H. D., Ismail, A. F., Matsuura, T., Harun, Z., Rahman, M. A., Puteh, M. H., Jaafar, J., Rezaei, M., and Hubadillah, S. K., "Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process", Journal of Cleaner Production, Vol. 140, (2017), 1731-1738. 5. Cerneaux, S., Struzynska, I., Kujawski, W. M., Persin, M., and Larbot, A., "Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes", Journal of membrane science, Vol. 337, No. 1, (2009), 55-60. 6. Huang, C. Y., Ko, C. C., Chen, L. H., Huang, C. T., Tung, K. L. and Liao, Y. C., "A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation." Separation and Purification Technology, (2016). 7. Zhu, Z., Xiao, J., He, W., Wang, T., Wei, Z. and Dong, Y., "A phase-inversion casting process for preparation of tubular porous alumina ceramic membranes", Journal of the European Ceramic Society, Vol. 25, No. 11, (2015), 3187-3194. 8. Lee, M., Wang, B. and Li, K. "New designs of ceramic hollow fibres toward broadened applications", Journal of Membrane Science, Vol. 503, (2016), 48-58. 9. Jeong, Y., Lee, S., Hong, S. and Park, C., "Preparation, characterization and application of low-cost pyrophyllite-alumina composite ceramic membranes for treating low-strength domestic wastewater", Journal of Membrane Science, Vol. 536, (2017), 108-115. 10. Lorente-Ayza, M. M., Sanchez, E., Sanz, V., and Mestre, S., "Influence of starch content on the properties of low-cost microfiltration ceramic membranes", Ceramics International, Vol. 41, No. 10, (2015), 13064-13073. 11. Hubadillah, S. K., Harun, Z., Othman, M. H. D., Ismail, A. and Gani, P., "Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique", Journal of Asian Ceramic Societies, Vol. 4, No. 2, (2016), 164-177. 12. Hubadillah, S. K., Harun, Z., Othman, M. H. D., Ismail, A., Salleh, W. N. W., Basri, H., Yunos, M. Z. and Gani, P., "Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: Effect of kaolin content and non-solvent coagulant bath", Chemical Engineering Research and Design, Vol. 112, (2016), 24-35. 13. Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A., Rahman, M. A., Jaafar, J., Jamil, S. M. and Mohtor, N. H., "Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation", Materials Letters, Vol. 191, (2017), 119-122. 14. Abdullah, N., Rahman, M. A., Othman, M. H. D., Ismail, A., Jaafar, J. and Aziz, A. A., "Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique", Ceramics International, Vol. 42, No. 10, (2016), 12312-12322. 15. Prasara-A, J. and Gheewala, S. H., "Sustainable utilization of rice husk ash from power plants: A review", Journal of Cleaner Production, (2016). 16. Tay, J. H. and K.-Y. Show, K. Y., "Use of ash derived from oil-palm waste incineration as a cement replacement material", Resources, conservation and recycling, Vol. 13, No.1, (1995), 27-36. 17. Shafabakhsh, G. and Ahmadi, S., “Evaluation of Coal Waste Ash and Rice Husk Ash on Properties of Pervious Concrete Pavement”, International Journal of Engineering Transactions B: Applications, Vol. 29, No. 2, (February 2016), 192-201. 18. Shim, J., Velmurugan, P. and Oh, B. T., "Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing", Journal of Industrial and Engineering Chemistry, Vol. 30, (2015), 249-253. 19. Adesanya, D. and Raheem, A., "Development of corn cob ash blended cement", Construction and Building Materials, Vol. 23, No. 1, (2009), 347-352. 20. Adesanya, D. and Raheem, A., (2010), "A study of the permeability and acid attack of corn cob ash blended cements", Construction and Building Materials, Vol. 24, No. 3, (2010), 403-409. 21. Pointner, M., Kuttner, P., Obrlik, T., Jager, A. and Kahr, H., "Composition of corncobs as a substrate for fermentation of biofuels", ISSN 1406-894X, Vol. 12, No. 2, (2009), 391-396. 22. Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D. and Hanna, M. A., "Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock", Biomass and Bioenergy, Vol. 32, No. 5, (2008), 460-467. 23. Nikzad, M., Movagharnejad, K., Najafpour, G. D. and Talebnia, F., “Comparative Studies on the Effect of Pretreatment of Rice Husk on Enzymatic Digestibility and Bioethanol Production”, International Journal of Engineering, Transactions B: Applications, Vol. 26, No. 5, (May 2013), 455-464. 24. Wanitwattanarumlug, B., Luengnaruemitchai, A. and Wongkasemjit, S., "Characterization of corn cobs from microwave and potassium hydroxide pretreatment." World Academy Sci. Eng. Technol, Vol. 64, (2012), 592-596. 25. Mohanraj, K., Kannan, S., Barathan, S. and Sivakumar, G.,. "Preparation and characterization of nano SiO2 from corn cob ash by precipitation method,", (2012). 26. Li, K., “ Ceramic membranes for separation and reaction”, John Wiley & Sons, (2007). 27. Kingsbury, B. F. and Li, K., "A morphological study of ceramic hollow fibre membranes", Journal of Membrane Science, Vol. 328, No. 1, (2009), 134-140. 28. Heydari, A., Alemzadeh, I. and Vossoughi, M., “Influence of Glycerol and Clay Contents on Biodegradability of Corn Starch Nanocomposites”, International Journal of Engineering Transactions B: Applications, Vol. 27, No. 2, (February 2014), 203-214. 29. Javadpour, J., Hosseinzadeh, M. and Marghussian, V. G., “Effect of particle size distribution and chemical composition on properties of magnesia-chromite bricks”, International Journal of Engineering Transactions B: Applications, Vol. 15, No. 2, (July 2002-183), 183-190.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir