Abstract




 
   

IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1318-1325    Article in Press

PDF URL: http://www.ije.ir/Vol31/No8/B/21-2796.pdf  
downloaded Downloaded: 38   viewed Viewed: 276

  BIODIESEL PRODUCTION VIA TRANSESTERIFICATION OF LOW GRADE COOKING OIL OVER HETEROSTRUCTURE NANO PARTICLES OF NI/MG/AL2O3 CATALYST
 
N. MOHD KAMAL, W. A. WAN ABU, S. TOEMEN and R. ALI
 
( Received: December 14, 2017 – Accepted: March 21, 2018 )
 
 

Abstract    Biodiesel which were synthesis from transesterification reaction in the present of heterogeneous base catalyst has been intensively studied over the last decades. This catalyst has an excellent result in producing high percentage conversions of biodiesel without further purification and cleaning process which contribute to the water pollution and high water content in biodiesel product. So, this study was conducted to synthesize and characterize series of heterostructure Ni/Mg/Al2O3 catalysts with different parameters to test their effectiveness towards the catalytic transesterification reaction. Series of Ni/Mg/Al2O3 catalysts were synthesized by wetness impregnation method supported on γ-alumina beads. Three parameters were studied include calcination temperatures, dopant ratios to based and numbers of alumina coating. The activity of the catalyst in transesterification reaction was evaluated at 65ºC of reaction temperature, 3 hours of reaction time, 6% w/w of catalyst loading and 1:24 molar ratio of oil to methanol. The potential catalyst was characterized by N2 Adsorption Analysis, TEM (BIO-TEM) and CO2-TPD. Meanwhile, the performance of the catalyst was evaluated using GC-FID. From the data obtained, Ni/Mg(20:80)/Al2O3 catalyst calcined at 800°C and three times alumina coating have the highest weak and moderate basic sites that contribute to the highest percentage conversion of low grade palm oil to biodiesel compared to others. Besides that, BIO-TEM result shows that the particle was unhomogeneous shape with a mixture of square sheet and one dimensional heterostructure nano-rod particles was observed. The data obtained from CO2-TPD and N2 Adsorption Analysis (NAA) prove that high basicity of the Ni/Mg(20:80)/Al2O3 catalyst (2.80389 mmol/g) and high surface area (125 m2/g) had lead to the 78.53% of biodiesel conversion.

 

Keywords    Key words heterogeneous, heterostructure, transesterification, biodiesel, nano-rod

 

چکیده   

بیودیزل که از واکنش ترانس استریفیکاسیون در حال حاضر از کاتالیزور پایه ناهمگن ساخته شده است، در دهه های گذشته بطور گسترده ای مورد مطالعه قرار گرفته است. این کاتالیزور یک نتیجه عالی در تولید درصد بالا تبدیل بیودیزل بدون تصفیه بیشتر و فرایند تمیز کردن است که به کاهش آلودگی آب و محتوای آب بالا در محصول بیودیزل کمک می کند. بنابراين، اين مطالعه به منظور توليد و دسته بندي کاتاليزورهاي نانوساختار Ni/Mg/Al2O3 با پارامترهاي مختلف براي تعيين اثربخشي آن ها در جهت واکنش کاتاليزوري ترانس استریفیکاسیون انجام شد. کاتالیزورهای سری Ni/Mg/Al2O3 با روش اشباع شدن رطوبت با دانه های γ-آلومینا سنتز شدند. سه پارامتر مورد مطالعه شامل دماسنج کلسیم، نسبت دوپینگ به مقیاس و تعداد پوشش آلومینا بود. فعالیت کاتالیزور در واکنش ترانس استریفیکاسیون در دمای 65 درجه سانتیگراد واکنش، 3 ساعت زمان واکنش، 6 درصد وزنی بر کیلوگرم بارگذاری کاتالیزور و نسبت مولی 1:24 روغن به متانول مورد بررسی قرار گرفت. کاتالیزور بالقوه با تجزیه و تحلیل جذب N2، TEM(BIO-TEM) و CO2-TPD مشخص شد. در همین حال، عملکرد کاتالیزور با استفاده از GC-FID مورد ارزیابی قرار گرفت. از داده های به دست آمده، کاتالیزور Ni/Mg/(20:80)/Al2O3 در دمای 800 درجه سانتیگراد کالسینه می شود و سه برابر پوشش آلومینا دارای بالاترین نقاط پایه ضعیف و متوسط هستند که به افزایش درصد تبدیل روغن نخل کم به بیودیزل در مقایسه با دیگران. علاوه بر این، نتایج BIO-TEM نشان می دهد که ذرات شکل غیرمعمول با مخلوطی از ورق مربع و ذرات نانو ذرات یک ساختار نانومتری مشاهده شده است. داده های به دست آمده از تجزیه و تحلیل جذب دی اکسید کربن (TPD) و N2 (NAA) نشان می دهد که پایه بالا Ni/Mg/(20:80)/Al2O3 کاتالیزور (2.80 mmol/g) و(125 m2/g) سطح بالایی از سطح 78.53% درصد از تبدیل بیودیزل.

References    1. Marinkovic, M.M., Stojkovic, N.I., Vasic, M.B., Ljupkovic, R.B., Rancic, S.M., Spalovic, B.R. and Zarubica, A.R., “Synthesis of Biodiesel from Sunflower Oil over Potassium Loaded Alumina as Heterogeneous Catalyst: The Effect of Process Parameters”, Scientific paper, (2015), 1-30. 2. Asril, N.P., Savitri, S.D., Suprapto., Budikarjono, K., and Roesyadi, Achmad., “Development of Heterogeneous Alumina Supported Base Catalyst for Biodiesel Production”, Chemical and Environmental Sciences, (2015), 59-63. 3. Guo, M., Song, W. and Buhain,J. Bioenergy and Biofuel: History Status and Perspective”, Renewable and Sustainable Energy Reviews, 42, (2015), 712-725. 4. Santamaria, M. and Azqueta,D., “Promoting Biofuels use in Spain: A Cost- Benefits Analysis”, Renewable and Sustainable Energy Reviews, 50, (2015), 1415-1424. 5. Jafarmadar, S., and Pashae, J. “Experimental Study of the Effect of Castor Oil Biodiesel Fuel on Performance and Emissions of Turbocharged DI Diesel”, International Journal of Engineering Transaction B: Application, 26, (2013), 905-912. 6. Issariyakul,T. and Dalai, A.k., “Biodiesel From Vegetable oilRenewable and Sustainable Energy Riviews”, 31, (2014), 446-471. 7. Talha, N.S. and Sulaiman,S. 2016. Overview of Catalyst in Biodiesel Production. ARPN Journal of Engineering and Applied Sciences. 11, 439-448. 8. Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R. and Sulaiman N.M.N., “The Effects of Catalysts in Biodiesel Production: A Review”, Journal of Industrial and Engeenering Chemistry, (2010), 1-40. 9. Amini, G., Najafpour, G., and Rabiee, S.M., “A Two-step Catalytic Production of Biodiesel from Waste Cooking Oil”, International Journal of Engineering Transaction B: Application, 26, (2013), 563-570. 10. Chavan, S.A.P.B., “Heterogeneous Catalysts for Biodiesel Synthesis by Transesterification”, International Journal of Innovative Research in Science, Engineering and Technology, (2014), 43-46. 11. Kesic,Z., Lukic, I., Zdujic, M., Mojovic, L. and Skala, D., “Calcium Oxide Based Catalyst for Biodiesel Production: A Review”, Chemical Industry & Chemical Engineering Quarterly, 22, (2016), 391-408. 12. Zabeti, M., Daud, W.M.A.W. and Aroua, M.K., “Activity of Solid Catalyst for Biodiesel: A Review”, Fuel Processing Technology,  90, (2009), 770-777. 13. Smolakova, L., Kout,M., Koudekova, E. and Capek, L., “Effect of Calcination temperature on the Structure and Catalytic Performance of the Ni/Al2O3 and Ni-Ce/AL2O3 Catalyst in Oxidative Dehydrogenation of Ethane”, Industrial Engineering Chemistry Research, 54, (2015),12730-12740. 14. Pandiangan, K.D., Jamarun, N., Arief, S., Simanjuntak and W., Rilyanti, M., “The Effect of Calcination Temperatures on the Activity of CaO and CaO/SiO2 Heterogeneous Catalyst for Transesterification of Rubber Seed oil in Presence of Coconut Oil as a Co-reactant”,  Orientel journal of Chemistry,  32, (2016), 3021-3026. 15. Refaat, A., “Biodiesel Production using Solid Metal Oxide Catalyst”, International Journal Environmental Science and Technology, 8, (2011), 30-221. 16. Zhang, L., Wang, X., Chen, C., Zou, X., Shang, X., Ding, W. and Lu, X., “Investigation of Mesoporous NiAl2O4/Mox (M= La, Ce,Ca,Mg)-  γ-Al2O3 nanocomposites for Dry Reforming of Methane”, RSC advances, 7, (2017), 33143-33154. 17. Kowalik, P. and Prochniak, W., “The Effect of Calcination Temkperature on Properties and Activity of Cu/ZnO/Al2O3 Catalyst”, 8, (2010), 79-87. 18. Wachs, I.E.. “Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials”, Catalysis Today. 100, (2005), 79-94. 19. Wu, J. C. S. and Chou, H. C. Bimetallic Rh-Ni/BN Catalyst for Methane Reforming with CO2. Chemical Engineering Journal, (2009), 148:539-545. 20. Lowell, S., Shieds, J.E., Thomas, M. A. and Thommes, M. “Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density”, (1Ed). Boyton, USA: Springer Netherlands (2004). 21. Thommes, M., Kaneko, K., V.Nelmark, A., Oliver, J., Reinoso, F., Rounquerol, J. and Sing, W.K., “” Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)”, Pure Application Chemistry, (2015), 1-19. 22. Toemen, S., Bakar, W.A.W.A. and Ali, R. “Effect of strontium on the Catalytic Activity and Physicochemical Properties of Ru/Mn Catalysts for CO2 Methanation Reaction”, Advance Materials Research, 1107, (2015),  371-376. 23. Irmawati, R., Shafizah,I., Sharina,A.N., Ahangar, H.A. and Yap, Y.H.T., “Transesterification of Palm Oil by Using Silica Loaded Potassium Carbonate (KCO3/SiO2) Catalyst to Produce Fatty Acid Methyl Ester (FAME)”, Energy and Power, 4, (2014), 7-15. 24. Zheng, H. Y., An, M. Z. and Lu, J. F., “Surface Characterization of the Zn-Al-Al2O3 Nanocomposite Coating Fabricating under Ultrasound Condition”, Applied Surface Science, 254, (2008), 1644-1650.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir