Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 12 (December 2018) 1977-1978   

downloaded Downloaded: 0   viewed Viewed: 49

  EXPERIMENTAL INVESTIGATIONS ON MICROSTRUCTURAL AND MECHANICAL BEHAVIOR OF FRICTION STIR WELDED ALUMINUM MATRIX COMPOSITE
 
N. Kaushik and S. Singhal
 
( Received: April 05, 2018 – Accepted: November 26, 2018 )
 
 

Abstract    The welding of materials by applying Friction Stir Welding technique is a new solid-state joining technique and in India, the use of this technique is still in its early stage of development. The main advantage of this method compared to the traditional joining process is that it minimizes problem-related to metal resolidification as the method incorporates no melting phase. In this experimental work, the effect of friction stir welding (FSW) technique on the microstructure and mechanical properties of the cast composite matrix AA6063 reinforced with 7wt.% SiC particles is studied. Friction stir welding, owing to the simultaneous effect of intense plastic deformation and frictional heat generated throughout welding, had impacts each on the reinforcement agents and the matrix alloy. FSW produced a notable reduction in the size of reinforcement agents and their homogeneous distribution in the weld region. It also induced the grain refinement due to dynamic recrystallization of the aluminum matrix alloy in the weld area. The frictional heat generated during frictional stir welding had impacts on the growth, dissolution and reprecipitation of the hardening precipitates. The microstructural changes resulted in improved mechanical properties such as UTS, elongation, and hardness of the joint. A joint efficiency of 91.4% is observed for the welded joint. The XRD and EDX analysis of the welded area confirmed that there was no formation of any other compound due to the frictional heat produced during welding. The SEM fracture morphology of the welded joint revealed that the fracture behavior is changed from ductile to the brittle following to FSW.

 

Keywords    Aluminum matrix composites (AMCs); FSW (Friction stir welding); AA6063; Microstructure; Tensile strength; Hardness

 

چکیده    جوشكاري مواد با استفاده از روش جوشكاري اصطكاك، يك روش اتصال جديد حالت جامد و در هند است، استفاده از اين روش هنوز در مرحله اول توسعه است. مزیت اصلی این روش نسبت به روند پیوستن سنتی این است که آن را به مسائل مربوط به بازسازی فلزات می رساند، زیرا این روش شامل هیچ مرحله ذوب نمی شود. در این کار آزمایشی اثر تکنیک جوشکاری اصطکاک جوشکاری (FSW) بر روی ریزساختار و خواص مکانیکی ماتریس کامپوزیت Cast AA6063 تقویت شده با ذرات 7wt٪ SiC مورد مطالعه قرار گرفت. جوشکاری اصطکاکی با توجه به اثر همزمان تغییر شکل شدید پلاستیکی و گرمای اصطکاک تولید شده در طی جوشکاری، هر کدام بر روی آلیاژهای تقویت کننده و آلیاژ ماتریکس تأثیر می گذارد. FSW کاهش قابل توجهی در اندازه عوامل تقویت کننده و توزیع همگن آنها در منطقه جوش ایجاد کرد. همچنین با توجه به پراکندگی پویا آلومینیوم ماتریس آلومینیومی در منطقه جوش، پالایش دانه را القا می کند. گرمای اصطکاک تولید شده در طی جوش کاری اصطکاکی، بر رشد، انحلال و جایگزینی رسوبات سخت شدن تاثیر گذاشته است. تغییرات ریز ساختاری منجر به بهبود خواص مکانیکی مانند UTS، انقباض و سختی مفصل می شود. بازده مشترک از 91.4٪ برای جوش داده شده است. تجزیه و تحلیل XRD و EDX در منطقه جوش نشان داده شده است که هیچ ترکیب دیگری به علت گرمای اصطکاک تولید شده در جوشکاری ایجاد نشده است. مورفولوژی شکستگی SEM جوش داده شده نشان داد که رفتار شکستگی از مجذور به شکننده پس از FSW تغییر کرده است.

References    1.    Rezaei, G. and Arab, N.B.M., "Investigation on tensile strength of friction stir welded joints in pp/epdm/clay nanocomposites", International Journal of Engineering-Transactions C: Aspects, Vol. 28, No. 9, (2015), 1382. 2.        R. Hasanzadeh, T. Azdast, A. Doniavi, S. Babazadeh, R. E. Lee, M. Daryadel, S. M. Shishavan, Welding Properties of Polymeric Nanocomposite Parts Containing Alumina Nanoparticles in Friction Stir Welding Process, International Journal of Engineering (IJE), TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 143-151 3.      Mishra, R. S., and Ma, Z. Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports50(1), (2005), 1-78. 4.       R. Singh , S. A. Rizvi, S. P. Tewari, Effect of Friction Stir Welding on the Tensile Properties of AA6063 under Different Conditions, International Journal of Engineering (IJE), TRANSACTIONSA: Basics Vol. 30, No. 4, (April 2017) 597-603 5.        Chidambaram A, Bhole SD., “Metallographic preparation of aluminum–alumina metal matrix composites”, Mat Char. (1997); 38:187–91. 6.     Uzun H., “Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite”, Mat Des. (2007); 28:1440–6. 7.      Amirizad, M., Kokabi, A. H., Gharacheh, M. A., Sarrafi, R., Shalchi, B., & Azizieh, M., “Evaluation of microstructure and mechanical properties in friction stir welded A356+ 15% SiCp cast composite. Materials Letters”, 60(4), (2006), 565-568. 8.    Ceschini, L., Boromei, I., Minak, G., Morri, A., & Tarterini, F., “Microstructure, tensile and fatigue properties of AA6061/20vol.% Al2O3p friction stir welded joints”, Composites Part A: Applied Science and Manufacturing, 38(4), (2007), 1200-1210. 9.    Ceschini, L., Boromei, I., Minak, G., Morri, A., & Tarterini, F., “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10vol.% Al2O3p composite. Composites science and technology, 67(3), (2007), 605-615. 10.     Ceschini, L., A. Casagrande, G. Minak, A. Morri, and F. Tarterini., "Caratterizzazione microstrutturale e meccanica di giunti in composito AA6061/20% vol. Al." la metallurgia italiana 7 (2005): 8. 11.     Ma, Z. Y., Feng, A. H., Xiao, B. L., Fan, J. Z., & Shi, L. K.., “Microstructural evolution and performance of friction stir welded aluminum matrix composites reinforced by SiC particles”, In Materials science forum (Vol. 539, pp. (2007), 3814-3819).   12.   Marzoli, L. M., Strombeck, A. V., Dos Santos, J. F., Gambaro, C., & Volpone, L. M., “Friction stir welding of an AA6061/Al2O3p/20p reinforced alloy”, Composites Science and Technology, 66(2), (2006), 363-371. 13.  L.M. Marzoli, R. Zettler, J.F. Dos Santos, M. Volpone, E. Rizzuto, Proceedings of the Symposium of Friction Stir Welding and Processing III, TMS, (2005), pp. 243–251. 14 .     Nakata, K., Inoki, S., Nagano, Y., & Ushio, M., “Friction stir welding of Al2O3p particulate 6061 Al alloy composite”, In Materials Science Forum, Vol. 426, (2003), pp. 2873-2878). Trans Tech Publications. 15.     Storjohann, D., Barabash, O. M., David, S. A., Sklad, P. S., Bloom, E. E., & Babu, S. S., “Fusion and friction stir welding of aluminum-metal-matrix composites”, Metallurgical and Materials Transactions A, 36(11), (2005), 3237-3247. 16.  Vijay SJ, Murugan N. Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite”,  Mater Des. (2010); 31:3585–9. 17.  Chen XG, Da Silva M, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites”, Mater Sci   Engg. A (2009); 518:174–84. 18.    Guo J, Gougeon P, Chen XG., “Characterisation of welded joints produced by FSW in AA 1100-B4C metal matrix composites”, Sci Technol Weld Join (2012);17:85–91. 19.  Nami H, Adgi H, Sharifitabar M, Shamabadi H., “Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite”, Mater Des. (20100; 32:976–83. 20.  Dinaharan I, Murugan N., “Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in-situ cast composites”, Mater Sci  Eng  A (20120; 543:257–66. 21.      Kerti I, Toptan F. Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater Lett. (2008); 62:1215–8. 22.     Toptan F, Kilicarslan A, Cigdem M, Kerti I. Processing and microstructural characterization of AA1070 and AA 6063 matrix B4CP reinforced composites”, Mater Des. (2010); 31:S87–91. 23.   Minak G, Ceschini L, Boromei I, Ponte M., “Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites”, Int J Fatigue (2009); 32:218–26. 24.    Baxter SC, Reynolds AP., “Characterisation of reinforcing particle size distribution in a friction stir welded Al–SiC extrusion”, In: Proc. ann. TMS meet., New Orleans, USA; (2001). pp 284–93. 25.      Prado, R. A., L. E. Murr, D. J. Shindo, and K. F. Soto., "Tool wear in the friction-stir welding of aluminum alloy 6061+ 20% Al2O3p: a preliminary study," Scripta materialia 45, no. 1 (2001): 75-80. 26.     Brinckmann, S., A. V. Strombeck, C. Schilling, J. F. Dos Santos, D. Lohwasser, and M. Kocak., "Mechanical and toughness properties of robotic-FSW repair welds in 6061-T6 aluminium alloys," GKSS FORSCHUNGSZENTRUM GEESTHACHT GMBH-PUBLICATIONS-GKSS 1, no. 41  (1998): ALL-ALL. 27.     Dawes, C. J., P. L. Threadgill, E. J. R. Spurgin, and D. G. Staines., “Development of the new friction stir technique for welding aluminum phase II”, TWI member report, Cambridge, UK (1995). 28.     Grant GJ, Herling DR, Davies RW., “Friction stir welding and processing of aluminium metal matrix composites”, In: Proc. TMS fall meet, USA; (2001). pp 177–89. 29.   Ashok Kumar B, Murugan N. Metallurgical and mechanical characterization of stir cast AA6061-T6-AlNp composite”, Mater Des (2012); 40:52–8.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir