Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 12 (December 2018) 1973-1974   

downloaded Downloaded: 0   viewed Viewed: 36

  MATHEMATICAL FORMULATION AND SOLVING OF GREEN CLOSED-LOOP SUPPLY CHAIN PLANNING PROBLEM WITH PRODUCTION, DISTRIBUTION AND TRANSPORTATION RELIABILITY UNDER UNCERTAIN CONDITIONS
 
M.B. Fakhrzad and P. Talebzadeh
 
( Received: January 30, 2018 – Accepted: November 26, 2018 )
 
 

Abstract    Abstract In this paper, we formulated the problem of multi-product multi-period multi-level closed-loop green supply chain planning under uncertain conditions. The formulated model consists of five objective functions, which minimize the cost of the supply chain, minimize the CO2 emission of transportation vehicles, maximize the reliability of manufacturing and distribution centers, maximize the reliability of the transportation system, and maximize the level of service provided. The modeled supply chain was assumed to be composed of multiple levels including suppliers, manufacturing/remanufacturing centers, distribution/collection centers, customers, and disposal centers. The formulation was developed in the format of a multi-objective mixed integer nonlinear programming model. The problem was solved by deriving the robust counterpart of the formulation. Given the NP-hard complexity and long solution time of the problem, particularly in the case of larger problem instances, a Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used for this purpose. Given the small difference between the optimal solutions obtained from the GAMS software and the near-optimal solutions obtained using NSGA-II, the metaheuristic algorithm can serve as a reliable method for solving the proposed formulation in the case of larger problem instances.

 

Keywords    Green supply chain planning, Uncertainty, Reliability, Fuzzy robust, Genetic algorithm

 

چکیده    چکیده طراحی شبکه زنجیره تامین حلقه بسته یکی از‌ مسائل مهم­ در مدیریت زنجیره تامین است. در این مقاله به کاربرد مجموعه‌های فازی برای طراحی یک شبکه زنجیره تأمین حلقه-بسته سبز چند ‌محصولی، چند دوره‌ای، چند سطحی تحت عدم قطعیت پرداخته شده است. زنجیره تأمین ارائه ‌شده شامل پنج تابع هدف می‌باشد: تابع هدف اول شامل کمینه‌سازی هزینه‌های شبکه زنجیره تامین می‌باشد. تابع هدف دوم کمینه‌سازی انتشار گازهای خروجی حاصل از جابجایی وسیله نقلیه در بین مراکز می‌باشد تابع هدف سوم شامل حداکثر‌سازی قابلیت اطمینان مراکز تولید، توزیع و حمل و نقل می‌باشد . تابع هدف چهارم شامل حداکثر سازی نرخ قابلیت اطمینان سیستم حمل و نقل می باشد. تابع هدف پنجم سطح سرویس دهی به مشتریان را بیشینه می‌کند. سطوح زنجیره تامین پیشنهادی شامل مراکز تأمین‌کننده، مراکز تولید/ احیا، مراکز توزیع/ جمع‌آوری، مراکز مشتریان و مراکز دفع می‌باشد. درنهایت عملکرد و کارایی مدل و روش­های حل پیشنهادی در قالب مثال عددی شبیه‌سازی شده، و مورد بررسی قرار می­گیرد.

References    References Kalaitzidou, M. A., Longinidis, P., & Georgiadis, M. C. (2015). Optimal design of closed-loop supply chain networks with multifunctional nodes. Computers & Chemical Engineering, 80(Supplement C), 73-91. doi:https://doi.org/10.1016/j.compchemeng.2015.05.009 Ning Ma, M. S., Ashayeri, P. d. i. J., & Sotirov, A. P. R. (2010). Robust Optimization of Supply Chain Downsizing Problem under Bankruptcy,A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy in Business. Tilburg University. Zeballos, L. J., Méndez, C. A., Barb,osa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering, 66(Supplement C), 151-164. doi:https://doi.org/10.1016/j.compchemeng.2014.02.027 Dai, Z., & Zheng, X. (2015). Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model. Computers & Industrial Engineering, 88(Supplement C), 444-457. doi:https://doi.org/10.1016/j.cie.2015.08.004 Ramezani, M., Kimiagari, A. M., Karimi, B., & Hejazi, T. H. (2014). Closed-loop supply chain network design under a fuzzy environment. Knowledge-Based Systems, 59(Supplement C), 108-120. doi:https://doi.org/10.1016/j.knosys.2014.01.016 Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165-4176. doi:https://doi.org/10.1016/j.apm.2012.09.039 Ramezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15), 4099-4119. doi:https://doi.org/10.1016/j.apm.2014.02.004 Soleimani, H., & Kannan, G. (2015). A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling, 39(14), 3990-4012. doi:https://doi.org/10.1016/j.apm.2014.12.016 Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630-2647. doi:https://doi.org/10.1016/j.apm.2013.11.002 10.  Alshamsi, A., & Diabat, A. (2015). A reverse logistics network design. Journal of Manufacturing Systems, 37(Part 3), 589-598. doi:https://doi.org/10.1016/j.jmsy.2015.02.006 11.  Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied Mathematical Modelling, 37(1), 328-344. doi:https://doi.org/10.1016/j.apm.2012.02.032 12.  Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015a). Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Information Sciences, 292(Supplement C), 57-74. doi:https://doi.org/10.1016/j.ins.2014.08.068 13.  Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. Transportation Research Part E: Logistics and Transportation Review, 67(Supplement C), 14-38. doi:https://doi.org/10.1016/j.tre.2014.04.001 14.  Cardona-Valdés, Y., Álvarez, A., & Pacheco, J. (2014). Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty. Transportation Research Part B: Methodological, 60(Supplement C), 66-84. doi:https://doi.org/10.1016/j.trb.2013.11.010 15.  Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. 16.  Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers & Chemical Engineering, 82(Supplement C), 115-128. doi:https://doi.org/10.1016/j.compchemeng.2015.06.008 17.  Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European Journal of Operational Research, 249(1), 76-92. doi:https://doi.org/10.1016/j.ejor.2015.08.028 18.  Cardoso, S. R., Barbosa-Póvoa, A. P., & Relvas, S. (2016). Integrating financial risk measures into the design and planning of closed-loop supply chains. Computers & Chemical Engineering, 85(Supplement C), 105-123. doi:https://doi.org/10.1016/j.compchemeng.2015.10.012 19.  Garg, K., Kannan, D., Diabat, A., & Jha, P. C. (2015). A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design. Journal of Cleaner Production, 100(Supplement C), 297-314. doi:https://doi.org/10.1016/j.jclepro.2015.02.075 20.  Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015b). Optimizing a bi-objective multi-product multi-period three echelon supply chain network with warehouse reliability. Expert Systems with Applications, 42(5), 2615-2623. doi:https://doi.org/10.1016/j.eswa.2014.11.018 21.  Khatami, M., Mahootchi, M., & Farahani, R. Z. (2015). Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transportation Research Part E: Logistics and Transportation Review, 79(Supplement C), 1-21. doi:https://doi.org/10.1016/j.tre.2015.03.003 22.  Deb, K., Pratap, A., Agarwal, S., & A. M. T. Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II (Vol. 6). 23.  MB Fakhrzad, A Sadri Esfahani, (2013). Modeling the time windows vehicle routing problem in cross-docking strategy using two meta-heuristic algorithms, International Journal of Engineering-Transactions A: Basics 27 (7), 1113. 24.  MB Fakhrzad, M Moobed, (2010). A GA Model Development for Decision Making Under Reverse Logistics, International Journal of Industrial Engineering 21 (4). 25.  ME Ramazankhani, A Mostafaeipour, H Hosseininasab, MB Fakhrzad,(2016). Feasibility of geothermal power assisted hydrogen production in Iran, International Journal of Hydrogen Energy 41 (41), 18351-18369.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir