Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 31, No. 11 (November 2018) 1840-1846    Article in Press

downloaded Downloaded: 0   viewed Viewed: 58

  DESIGN AND SIMULATION OF HOT CATHODE IONIZATION VACUUM GAUGE WITH NO X-RAY LIMITATIONS
 
S. Mohammadzadeh Bazarchi and E. Abbaspour-Sani
 
( Received: April 07, 2018 – Accepted: August 17, 2018 )
 
 

Abstract    In this paper, the MEMS type ionization gauge with no X-Ray limitations is presented. The designed gauge, in dimensions of 2.4 mm× 0.8mm × 1.4 mm, is 9000 times smaller than the conventional type and can operate in HV and UHV pressures up to 5×10-9 torr. Operating at the temperature of 750°C, the cathode of proposed gauge is implemented using nickel and works in a way in which its temperature, independent of the peripheral gas pressure, remains constant throughout it. The total power consumption of the design is 430 times less than the conventional type. The electrical, thermal, mechanical, ionization collisions and elastic collisions have been performed using COMSOL5 program, and the output data from COMSOL were analyzed by MATLAB. The simulation results are used in designing of cathode and other parts’ dimensions. The simulation results show that the sensitivity factor is 0.2 1/torr

 

Keywords    MEMS ionization gauge, MEMS vacuum sensor, hot cathode ion gauge, vacuum pressure sensor, ion gauge X-Ray limitations.

 

چکیده    در این مقاله گیج یونی کاتد گرم نوع سیستم های میکروالکترومکانیکی و بدون محدودیت اشعه ایکس ارائه می‌شود. طرح در ابعاد 1.4×0.8×2.4 میلیمتر مکعب بوده و 9000 برابر از نوع متعارف کوچکتر است. طرح پیشنهادی در محدوده خلا بالا و خلا خیلی بالا تا حداقل فشار خلاء 9-10×5 تور می‌تواند عمل نماید. کاتد طرح در دمای 750 درجه سانتی‌گراد کار می‌کند. کاتد از جنس نیکل بوده و طرح آن طوری است که دمای آن در طول آن ثابت و مستقل از فشار گاز محیطی است. توان مصرفی طرح 430 برابر از مقدار نوع متعارف کمتر است. در این مقاله شبیه‌سازی الکتریکی, گرمایی, مکانیکی, برخورد یونیزاسیون و برخورد الاستیک توسط برنامه کامسول 5 انجام می‌گیرد. داده های خروجی از شبیه‌سازی کامسول توسط برنامه مطلب تحلیل می‌شود. از نتایج شبیه‌سازی برای طرح کاتد و انتخاب ابعاد قسمت‌های دیگر استفاده می‌شود. از نتایج شبیه‌سازی ضریب حساسیت 0.2 بر تور حاصل شده است.

References      1.       Zhang, L., Jiao, B., Yun, S., Kong, Y., Ku, C., Chen, D. “A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks”. Journal of Chinese Phys. Lett., Vol. 34, No. 2, (2017), 025101. 2.       Piotto, M., Cesta, S., Bruschi, P., “A Compact CMOS Compatible micro-Pirani Vacuum Sensor with Wide Operating Range and Low Power Consumption”, Journal of Procedia Engineering, Vol. 168, (2016), 766-769. 3.       “Technical Brochure of PVC1000 Series Pirani vacuum sensors”, Posifa Microsystem Inc., www.posifamicrosystems.com. 4.       “Series 943 operation and maintenance manual cold cathode Vacuum Sensor System”, MKS instrument Inc, www.mksinst.com. 5.       Grzebyk, T., Drzazga, A. G., “MEMS type ionization vacuum sensor”,  Journal of Sensors and Actuators A, Vol. 246, (2016), 148. 6.       O'Hanion, J. F., “User's Guide to Vacuum Technology”, john Wiley and sons, New York, (2004). 7.       Grzebyk, T., Górecka-Drzazga, A. Dziuban, J. A. Maamari, K., “Integration of a MEMS-type vacuum pump with a MEMS-type Pirani pressure gauge", Journal of Vacuum Science & Technology B, Vol. 33, No. 3, (2015), 03C103. 8.       “Bayard-Alpert Ionization Gauges”, Stanford research Systems,www.thinksrs.com/downloads/PDFs/ApplicationNotes/IG1BAGapp.pdf. 9.       “Bayard-Alpert Ionization Gauges”, Stanford research Systems,www.thinksrs.com/products/BAgauges.htm 10.     Madan Pasandi, A., Afrang, S., Dowlati, S., Sharafkhani, N., Rezazadeh, G., “Study of Volumetric Flow Rate of a Micro-pump Using a Non-Classical Elasticity Theory”, IJE TRANSACTIONS A: Basics, Vol. 31, No. 4, (2018), 236-243. 11.     Suginuma, S., Hirata, M., Shigemi, T. K., “Simulation of Relative Sensitivity Coefficient of Bayard-Alpert Gauge,” Journal of the Vacuum Society of Japan, Vol. 59, No. 6, (2016), 156-159. 12.     Ki Kim, Y., Desclaux, J., “Ionization of carbon, nitrogen and oxygen by electron impact”, Journal of Phys. Review A, Vol. 66, No. 1, (2002), 012708. 13.     “Shrinking the pirani vacuum gauge”, MKS instrument Inc.,  www.johnmorris.com.au. 14.     Wang, J., Yu, J., “Fabrication Process and Electro-Thermal Modeling for the Cathode of the CMOS-Compatible Hot-Filament Vacuum Gauge,” Journal of Key Engineering Materials, Vol. 645, (2015), 836-840. 15.     “Electron Emission”, Talking electronics, www.talkingelectronics.com/Download%20eBooks/Principles%20of%20electronics/CH-02.pdf. 16.     Razavi, B., “RF Microelectronics”, 2nd Edition, Prentice Hall, (2011). 17.     Prof. David B., “Introduction to Gas Discharges”, University of Notre Dame, Notre Dame, (2012). 18.     “The Thermal Conductivity of Air at Reduced Pressures and Length Scales”, Electronic cooling, www.electronics-cooling.com. 19.     Salarvand, A., Poursaeidi, E., “Comparison of Properties of Ti/TiN/TiCN/TiAlN Film Deposited by Cathodic Arc Physical Vapor and Plasma-assisted Chemical Vapor Deposition on Custom 450 Steel Substrates”, IJE TRANSACTIONS A: Basics, Vol. 29, No. 10 (2016), 1459-1468. 20.     Azadi, M., Iziy, M., Marbout, A., Azadi, M., Rizi, M. H., “Investigation of the Heat Treatment Effect on Microstructures and Phases of Inconel 713C Superalloy”, IJE TRANSACTIONS A: Basics, Vol. 30, No. 10 (2017), 1538-1544. 21.     “The Particle Tracing Module User's Guide - Numerical Modelling”, www.comsol.com. 22.     Humphries, S., “charged particle beams”, Dover, New York, (2013). 23.     Hanlon, F. O., “User's Guide to Vacuum Technology”, john Wiley and sons, New York, (2004). 24.     Tämm, K., Mayeux, C., Sikk, L., Gal, J., Burk, P., “Theoretical modeling of sensitivity factors of Bayard-Alpert ionization gauges”, Journal of Mass Spectrometry, Vol. 341, (2013), 52-58. 25.     Itikawa, Y., “Cross Sections for Electron Collisions with Nitrogen Molecules”, Journal of Physical and Chemical Reference Data, Vol. 35, No. 1, (2006), 31-53. 26.     “Femto-ammeter and Electrometer High Resistance Meter”, Keystone Technologies, www.amplicon.com/data/keysight_b2981a_femto_picoammeter.pdf.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir