Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 30, No. 10 (October 2017) 1599-1608    Article in Press

PDF URL: http://www.ije.ir/Vol30/No10/A/22-2584.pdf  
downloaded Downloaded: 51   viewed Viewed: 1208

  THERMAL PERFORMANCE OF JET IMPINGEMENT WITH SPENT FLOW MANAGEMENT
 
A. Husain and M. Ariz
 
( Received: March 20, 2017 – Accepted in Revised Form: July 07, 2017 )
 
 

Abstract    The present study proposes novel micro-jet impingement heat sink with effusion holes for flow extraction. The design consists of impingement nozzles surrounded by multiple effusion holes to take away the spent fluid. A three-dimensional numerical model is used for steady, incompressible, laminar flow and conjugate heat transfer for the performance analysis of the proposed design. The computational domain is defined by applying symmetric boundary conditions around a unit cell of the jet impingements and effusion holes. The effect of several design parameters, viz., jet diameter, effusion-hole diameter, stand-off and the jet-to-effusion pitch is investigated. A higher standoff-to-jet diameter ratio exhibited lower thermal resistance whereas lower standoff-to-jet diameter ratio exhibited lower pressure-drop. Smaller jet-to-effusion hole spacing resulted in minimum temperature-rise along with maximum total pressure-drop and heat transfer coefficients.

 

Keywords    Jet impingement, Effusion holes, Spent flow management, Enhance heat transfer, Thermal resistance, Pressure drop

 

چکیده    تحقیق حاضر، مبدل حرارتی مجهز به میکرو جت با حفره های افیوژن را برای استخراج جریان پیشنهاد می کند. این طراحی شامل نازل های ضربه ای محاصره شده توسط سوراخ های متعدد عایق است تا مایع منتقل شده را از بین ببرد. یک مدل عددی سه بعدی برای جریان پایدار، غیر متراکم، جریان انعطاف پذیر و انتقال حرارت متناوب برای تحلیل عملکرد طراحی پیشنهادی استفاده می شود. دامنه محاسباتی با استفاده از شرایط مرزی متقارن در اطراف یک سلول واحد جابجایی جت و سوراخ افقی است. اثر تعدادی از پارامترهای طراحی، به عنوان مثال، قطر جت، قطر افقی دیافراگم، stand-off و درجه جت به افیوژن بررسی شده است. نسبت بالاتر قطر جت به stand-off ، مقاومت حرارتی پایین تر را نشان می دهد، در حالی که نسبت کمتر قطر standoff به جت نشان دهنده افت فشار پایین تر است. فاصله کمتر دیافراگم جت به افیوژن منجر به حداقل افزایش درجه حرارت همراه با حداکثر افت فشار کل و ضریب انتقال حرارت شد.

References   

1.      Tuckerman, D.B. and Pease, R., "High-performance heat sinking for vlsi", IEEE Electron Device Letters,  Vol. 2, No. 5, (1981), 126-129.

2.      Kawano, K., Sekimura, M., Minakami, K., Iwasaki, H. and Ishizuka, M., "Development of micro channel heat exchanging", JSME International Journal Series B Fluids and Thermal Engineering,  Vol. 44, No. 4, (2001), 592-598.

3.      Qu, W. and Mudawar, I., "Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink", International Journal of Heat and Mass Transfer,  Vol. 45, No. 12, (2002), 2549-2565.

4.      Toh, K., Chen, X. and Chai, J., "Numerical computation of fluid flow and heat transfer in microchannels", International Journal of Heat and Mass Transfer,  Vol. 45, No. 26, (2002), 5133-5141.

5.      Liu, D. and Garimella, S.V., "Analysis and optimization of the thermal performance of microchannel heat sinks", in ASME International Electronic Packaging Technical Conference and Exhibition, American Society of Mechanical Engineers. (2003), 557-565.

6.      Husain, A. and Kim, K.-Y., "Microchannel heat sink with designed roughness: Analysis and optimization", Journal of Thermophysics and Heat Transfer,  Vol. 22, No. 3, (2008), 342-351.

7.      Husain, A. and Kim, K.-Y., "Optimization of a microchannel heat sink with temperature dependent fluid properties", Applied Thermal Engineering,  Vol. 28, No. 8, (2008), 1101-1107.

8.      Khameneh, P.M., Mirzaie, I., Pourmahmoud, N., Rahimi, M. and Majidyfar, S., "A numerical study of single-phase forced convective heat transfer in tube in tube heat exchangers", World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,  Vol. 4, No. 10, (2010), 958-963.

9.      Hamann, H.F., Weger, A., Lacey, J.A., Hu, Z., Bose, P., Cohen, E. and Wakil, J., "Hotspot-limited microprocessors: Direct temperature and power distribution measurements", IEEE Journal of Solid-State Circuits,  Vol. 42, No. 1, (2007), 56-65.

10.    Dhass, A., Natarajan, E. and Lakshmi, P., "An investigation of temperature effects on solar photovoltaic cells and modules", International Journal of Engineering,  Vol. 27, (2014), 136-142.

11.    Martin, H., "Heat and mass transfer between impinging gas jets and solid surfaces", Advances in Heat Transfer,  Vol. 13, (1977), 1-60.

12.    Jambunathan, K., Lai, E., Moss, M. and Button, B., "A review of heat transfer data for single circular jet impingement", International journal of heat and fluid flow,  Vol. 13, No. 2, (1992), 106-115.

13.    Webb, B. and Ma, C.-F., "Single-phase liquid jet impingement heat transfer", Advances in heat transfer,  Vol. 26, No., (1995), 105-217.

14.    Womac, D., Incropera, F. and Ramadhyani, S., "Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets", ASME Transactions Journal of Heat Transfer,  Vol. 116, (1994), 482-486.

15.    Garimella, S.V. and Rice, R., "Confined and submerged liquid jet impingement heat transfer", Transactions-American Society of Mechanical Engineers Journal of Heat Transfer,  Vol. 117, (1995), 871-877.

16.    Wu, S., Mai, J., Tai, Y. and Ho, C., "Micro heat exchanger by using mems impinging jets", in Micro Electro Mechanical Systems,. MEMS'99. Twelfth IEEE International Conference on, IEEE., (1999), 171-176.

17.    Lee, D.-Y. and Vafai, K., "Comparative analysis of jet impingement and microchannel cooling for high heat flux applications", International Journal of Heat and Mass Transfer,  Vol. 42, No. 9, (1999), 1555-1568.

18.    Sung, M.K. and Mudawar, I., "Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme", International Journal of Heat and Mass Transfer,  Vol. 51, No. 19, (2008), 4614-4627.

19.    Wang, E.N., Zhang, L., Jiang, L., Koo, J.-M., Maveety, J.G., Sanchez, E.A., Goodson, K.E. and Kenny, T.W., "Micromachined jets for liquid impingement cooling of VLSI chips", Journal of Microelectromechanical Systems,  Vol. 13, No. 5, (2004), 833-842.

20.    Hollworth, B., Lehmann, G. and Rosiczkowski, J., "Arrays of impinging jets with spent fluid removal through vent holes on the target surface, part 2: Local heat transfer", Journal of Engineering for Power,  Vol. 105, No. 2, (1983), 393-402.

21.    Kim, K.M., Moon, H., Park, J.S. and Cho, H.H., "Optimal design of impinging jets in an impingement/effusion cooling system", Energy,  Vol. 66, (2014), 839-848.

22.    Xiao-ming, T., Jing-zhou, Z. and Hua-sheng, X., "Experimental investigation on impingement/effusion cooling with short normal injection holes", International Communications in Heat and Mass Transfer,  Vol. 69, (2015), 1-10.

23.    Andrews, G., Asere, A., Hussain, C., Mkpadi, M. and Nazari, A., "Impingement/effusion cooling: Overall wall heat transfer", ASME paper,  No. 88-GT, (1988), 290-299.

24.    Cho, H.H. and Rhee, D.H., "Local heat/mass transfer measurement on the effusion plate in impingment/effusion cooling system", in ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers., (2000), V003T001A058-V003T001A058.

25.             Cho, H.H., Rhee, D.H. and Goldstein, R., "Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing", Journal of Turbomachinery,  Vol. 130, No. 4, (2008), 041003.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir