Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 30, No. 10 (October 2017) 1471-1478    Article in Press

PDF URL: http://www.ije.ir/Vol30/No10/A/7-2580.pdf  
downloaded Downloaded: 192   viewed Viewed: 1808

  SINGLE IMAGE DEHAZING ALGORITHM BASED ON DARK CHANNEL PRIOR AND INVERSE IMAGE
 
X. Zhou, L. Bai and C. Wang
 
( Received: February 28, 2017 – Accepted in Revised Form: July 07, 2017 )
 
 

Abstract    The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger values of the transmission are the final transmission. This algorithm tends to refine the medium transmission by adjusting the values of pixels in the bright region to meet the hypothesis of dark channel prior. The method is viable to eliminate color distortion of the dehazed image.

 

Keywords    image dehazing, haze removal, dark channel prior, inverse image

 

چکیده    ناحیه های آسمان با تصاویر مه آلود که با روشهای متعارف تحت فرآیند های موجود مه زدایی قرار می گيرند با اعوجاج رنگ و نویز شدید بدترمی شوند. این مقاله الگوریتم بهبود یافته ای را ارائه می کند که کانال تاریک اولیه(Dark Channel Prior) را با تصويروارون ترکیب می کند. ابتدا تصویر مه آلود را وارون می کنیم و سپس انتقال این تصوير وارون شده را تخمین می زنیم. سرانجام در مقایسه با تصوير وارون نشده بزرگترین مقادیر انتقال، همان مقادیر انتقال نهایی می باشند. این الگوریتم تمایل دارد که محیط انتقال را با تنظیم پیکسل های ناحیه روشن پالایش کند تا فرض کانال تاریک اولیه را برآورده سازد. این روش برای حذف اعوجاج رنگ تصویر ابهام زدایی شده مناسب است.

References   

1.      Xu, Y., Wen, J., Fei, L. and Zhang, Z., "Review of video and image defogging algorithms and related studies on image restoration and enhancement", IEEE Access,  Vol. 4, (2016), 165-188.

2.      McCartney, E.J. and Hall, F.F., "Optics of the atmosphere: Scattering by molecules and particles", New York, John Wiley and Sons, Inc., 1976. 421 p.,  (1976), 23-32.

3.      Oakley, J.P. and Satherley, B.L., "Improving image quality in poor visibility conditions using a physical model for contrast degradation", IEEE Transactions on Image Processing,  Vol. 7, No. 2, (1998), 167-179.

4.      Narasimhan, S.G. and Nayar, S.K., "Chromatic framework for vision in bad weather", in Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, IEEE.. Vol. 1, (2000), 598-605.

5.      Narasimhan, S.G. and Nayar, S.K., "Vision and the atmosphere", International Journal of Computer Vision,  Vol. 48, No. 3, (2002), 233-254.

6.      Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M. and Lischinski, D., "Deep photo: Model-based photograph enhancement and viewing", ACM Transactions on Graphics, Vol. 27, No. 5, (2008), 1-10.

7.      Fattal, R., "Single image dehazing", ACM Transactions on Graphics, Vol. 27, No. 3, (2008), 1-9.

8.      Tarel, J.-P. and Hautiere, N., "Fast visibility restoration from a single color or gray level image", in Computer Vision, IEEE 12th International Conference on, IEEE., (2009), 2201-2208.

9.      He, K., Sun, J. and Tang, X., "Single image haze removal using dark channel prior", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 33, No. 12, (2011), 2341-2353.

10.    Jiang, J., Hou, T. and Qi, M., "Improved algorithm on image haze removal using dark channel prior", Journal of Circuits and Systems,  Vol. 16, No. 2, (2011), 7-12.

11.    Wang, G., Ren, G., Jiang, L. and Quan, T., "Single image dehazing algorithm based on sky region segmentation", Information Technology Journal,  Vol. 12, No. 6, (2013), 1168-1175.

12.    Zhang, H.-K., Zhou, P.-C. and Xue, M.-G., "Foggy weather image enhancement algorithm based on dark channel prior and histogram matching", Computer Engineering,  Vol. 38, No. 1, (2012), 215-219.

13.    Levin, A., Lischinski, D. and Weiss, Y., "A closed-form solution to natural image matting", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 30, No. 2, (2008), 228-242.

14.    He, K., Sun, J. and Tang, X., "Guided image filtering", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 35, No. 6, (2013), 1397-1409.

15.             Hautiere, N., Tarel, J.-P., Aubert, D. and Dumont, E., "Blind contrast enhancement assessment by gradient ratioing at visible edges", Image Analysis & Stereology,  Vol. 27, No. 2, (2008), 87-95.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir