IJE TRANSACTIONS A: Basics Vol. 30, No. 10 (October 2017) 1555-1564    Article in Press

PDF URL: http://www.ije.ir/Vol30/No10/A/17-2577.pdf  
downloaded Downloaded: 69   viewed Viewed: 1482

A. Kumar and A. Biswas
( Received: September 12, 2016 – Accepted in Revised Form: July 07, 2017 )

Abstract    For remote places having less-strong wind, single resources based renewable energy system (RES) with battery storage can sustainably and economically generate electrical energy. There is hardly any literature on optimal sizing of such RES for very low load demand situation. The objective of this study is to techno-economically optimize the system design of a Photovoltaic (PV)-battery storage RES for an institutional academic block in Silchar, India having maximum demand less than only 30 kW. The sizing process of various subsystems of the RES is first discussed. Then the RES is techno-economically optimized under 100% reliability to power supply condition, i.e. 0% unmeet energy (UE) and least excess energy. In this, performances of three different optimization algorithms- genetic algorithm (GA) and two meta-heuristics, namely Firefly Algorithm (FA) and Grey Wolf Optimizer (GWO) algorithms are investigated and compared. The optimal configuration under least levelized cost of energy (COE) is further examined. Results demonstrate that GWO is the best optimization tool for optimizing the cost of energy (COE) in comparison with the other optimization algorithms. It has been shown that a single optimization method might not always guarantee that the objective function has converged successfully in fulfilling all the requirements of least excess energy, autonomy days, and least COE. The present research provides a useful reference for the design optimization of single resource based RES for low load demand situation.


Keywords    Photovoltaic (PV) renewable energy system, levelized cost of energy, reliability, cost optimization, load factor, autonomy days


چکیده    برای مکان­های دور با بادهای ضعیف­تر، سیستم انرژی تجدید پذیر با منابع ذخیره­ی باتری، می­توان انرژی پایدار و اقتصادی تولید کرد. تقریباً هیچ سابقه­ی پژوهشی برای اندازه گیری مطلوب چنین سیستم­هایی برای شرایط تقاضای بسیار کم در منابع وجود ندارد. هدف از این مطالعه، بهینه سازی فنی سیستم طراحی مجتمع ذخیره سازی فتوولتائیک (PV) برای یک بلوک علمی دانشگاهی در سیلچار (Silchar) هند با حداکثر تقاضای کمتر از 30 کیلووات است. ابتدا در مورد فرایند اندازه گیری زیرسیستم­های مختلف بحث کرده و سپس آن را از نظر فنی به 100٪ قابلیت اطمینان برای وضعیت ذخیره انرژی، یعنی انرژی و حداقل انرژی اضافی، بهینه می­کنیم. در این کار، عمل­کرد سه الگوریتم بهینه­سازی مختلف یعنی الگوریتم ژنتیک (GA) و دو آلگوریتم فراابتکاری، یعنی الگوریتم پروانه­ی شب­تاب (FA) و الگوریتم بهینه­ساز گرگ خاکستری (GWO) بررسی و مقایسه می­شود. پیکربندی بهینه با کمترین هزینه­ی انرژی (COE) بیشتر بررسی می­شود. نتایج نشان می­دهد که GWO بهترین ابزار برای بهینه سازی هزینه­ی انرژی در مقایسه با سایر الگوریتم­هاست. نشان داده شده است که یک روش بهینه سازی به­تنهایی ممکن است همیشه نتواند تضمین کند که تابع هدف با موفقیت در برآوردن تمام الزامات حداقل انرژی اضافی روزهای مستقل و حداقل COE هم­گرا شده است. پژوهش حاضر مرجع مفیدي براي طراحي بهينه سازي سیستم انرژی تجدید پذیر مبتني بر ذخیره­سازی براي وضعيت تقاضاي کم به دست می­دهد.


1.      Borowy, B.S. and Salameh, Z.M., "Optimum photovoltaic array size for a hybrid wind/pv system", IEEE Transactions on Energy Conversion,  Vol. 9, No. 3, (1994), 482-488.

2.      Bagul, A., Salameh, Z.M. and Borowy, B., "Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation", Solar Energy,  Vol. 56, No. 4, (1996), 323-335.

3.      Diaf, S., Diaf, D., Belhamel, M., Haddadi, M. and Louche, A., "A methodology for optimal sizing of autonomous hybrid pv/wind system", Energy Policy,  Vol. 35, No. 11, (2007), 5708-5718.

4.      Bernal-Agustín, J.L. and Dufo-Lopez, R., "Simulation and optimization of stand-alone hybrid renewable energy systems", Renewable and Sustainable Energy Reviews,  Vol. 13, No. 8, (2009), 2111-2118.

5.      Zhou, W., Lou, C., Li, Z., Lu, L. and Yang, H., "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems", Applied Energy,  Vol. 87, (2010), 380-389.

6.      Dali, M., Belhadj, J. and Roboam, X., "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management–experimental investigation", Energy,  Vol. 35, No. 6, (2010), 2587-2595.

7.      Yan, R. and Yanpin, L., "Simulation and optimization of hybrid wind-solar-pumped-storage power system", in Electric Information and Control Engineering (ICEICE), International Conference on, IEEE., (2011), 729-733.

8.      Ma, T., Yang, H., Lu, L. and Peng, J., "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in hong kong", Renewable Energy,  Vol. 69, (2014), 7-15.

9.      Ma, T., Yang, H. and Lu, L., "Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island", Energy Conversion and Management,  Vol. 79, (2014), 387-397.

10.    Ma, T., Yang, H., Lu, L. and Peng, J., "Optimal design of an autonomous solar–wind-pumped storage power supply system", Applied Energy,  Vol. 160, (2015), 728-736.

11.    Ma, T., Yang, H. and Lu, L., "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island", Applied Energy,  Vol. 121, (2014), 149-158.

12.    Gupta, R. and Biswas, A., "Wind data analysis of silchar (assam, india) by rayleighs and weibull methods", Journal of Mechanical Engineering Research,  Vol. 2, No. 1, (2010), 010-024.

13.    Gangwar, S., Bhanja, D. and Biswas, A., "Cost, reliability, and sensitivity of a stand-alone hybrid renewable energy system—a case study on a lecture building with low load factor", Journal of Renewable and Sustainable Energy,  Vol. 7, No. 1, (2015), 013109-013117.

14.    Ma, T., Yang, H., Lu, L. and Peng, J., "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization", Applied Energy,  Vol. 137, (2015), 649-659.

15.    Crettenand, N., "Small storage and pumped storage plants in switzerland", International Water Power & Dam Construction,  Vol. 64, No. EPFL-ARTICLE-177880, (2012), 22-24.

16.    Nair, N.-K.C. and Garimella, N., "Battery energy storage systems: Assessment for small-scale renewable energy integration", Energy and Buildings,  Vol. 42, No. 11, (2010), 2124-2130.

17.    Mahmoud, M.M., "On the storage batteries used in solar electric power systems and development of an algorithm for determining their ampere–hour capacity", Electric Power Systems Research,  Vol. 71, No. 1, (2004), 85-89.

18.    Hoppmann, J., Volland, J., Schmidt, T.S. and Hoffmann, V.H., "The economic viability of battery storage for residential solar photovoltaic systems–a review and a simulation model", Renewable and Sustainable Energy Reviews,  Vol. 39, (2014), 1101-1118.

19.    Dagdougui, H., Minciardi, R., Ouammi, A., Robba, M. and Sacile, R., "Modeling and optimization of a hybrid system for the energy supply of a “green” building", Energy Conversion and Management,  Vol. 64, (2012), 351-363.

20.    Zhao, J., Wang, C., Zhao, B., Lin, F., Zhou, Q. and Wang, Y., "A review of active management for distribution networks: Current status and future development trends", Electric Power Components and Systems,  Vol. 42, No. 3-4, (2014), 280-293.

21.    Shaahid, S. and Elhadidy, M., "Technical and economic assessment of grid-independent hybrid photovoltaic–diesel–battery power systems for commercial loads in desert environments", Renewable and Sustainable Energy Reviews,  Vol. 11, No. 8, (2007), 1794-1810.

22.    Melanie, M., "An introduction to genetic algorithms", Cambridge, Massachusetts London, England, Fifth printing,  Vol. 3, (1999), 62-75.

23.    Malhotra, R., Singh, N. and Singh, Y., "Genetic algorithms: Concepts, design for optimization of process controllers", Computer and Information Science,  Vol. 4, No. 2, (2011), 39-46.

24.    Xing, B. and Gao, W.-J., "Innovative computational intelligence: A rough guide to 134 clever algorithms, Springer,  (2014).

25.    Mirjalili, S., Mirjalili, S.M. and Lewis, A., "Grey wolf optimizer", Advances in Engineering Software,  Vol. 69, (2014), 46-61.

26.    Gustavsson, M. and Mtonga, D., "Lead-acid battery capacity in solar home systems—field tests and experiences in lundazi, zambia", Solar energy,  Vol. 79, No. 5, (2005), 551-558.

27.    Krieger, E.M., Cannarella, J. and Arnold, C.B., "A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications", Energy,  Vol. 60, (2013), 492-500.

28.    Hadjipaschalis, I., Poullikkas, A. and Efthimiou, V., "Overview of current and future energy storage technologies for electric power applications", Renewable and Sustainable Energy Reviews,  Vol. 13, No. 6, (2009), 1513-1522.

29.    Baker, J., "New technology and possible advances in energy storage", Energy Policy,  Vol. 36, No. 12, (2008), 4368-4373.

30.    Kaldellis, J., Kapsali, M., Kondili, E. and Zafirakis, D., "Design of an integrated pv-based pumped hydro and battery storage system including desalination aspects for the island of tilos", in 4th international conference on clean electrical power (ICCEP), Alghero, Italy., (2013), 11-13.

31.    Yang, X.-S., "Firefly algorithm, stochastic test functions and design optimisation", International Journal of Bio-Inspired Computation,  Vol. 2, No. 2, (2010), 78-84.

32.             Biswas, A. and Kumar, A., "Techno-economic optimization of a stand-alone pv/phs/battery systems for very low load situation", International Journal of Renewable Energy Research (IJRER),  Vol. 7, No. 2, (2017), 844-856.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir