IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 642-647   

PDF URL: http://www.ije.ir/Vol28/No4/A/20-1937.pdf  
downloaded Downloaded: 202   viewed Viewed: 1946

B. M. Ziapour, A. Mohammadnia and M. Baygan
( Received: December 23, 2014 – Accepted: March 13, 2015 )

Abstract    The heat pipe applications have been coupled with the renewable energy such as solar energy, waste heat and geothermal energy. Thermosyphon Rankine Cycle (TRC) is a vertical wickless heat pipe engine. In this engine, the turbine is installed between the insulated section and a condenser section of thermosyphon. The mechanical energy developed by the turbine can be converted to electricity, by direct coupling to an electrical generator. Present work simulation results showed that the enhanced TRC model is able to increase the efficiency of the TRC system. This paper introduces the miscellanies new ways in order to improve the performance of a TRC system for supplying the sustainable electricity. For example, the increasing percent of the turbine useful efficiency due to the superheating process was obtained as 0.78% .


Keywords    Electricity, Engine, Heat pipe, Impulse turbine, Sustainability


چکیده    کاربردهای لوله ی گرمایی با انرژیهای تجدیدپذیر نظیر انرژی خورشیدی، گرمای هدر رونده و انرژی زمین گرمایی گره خورده است. چرخه ی را نکین ترموسیفونی (TRC) یک موتور لوله گرمایی قایم و بدون فتیله است. در این موتور توربین بین قسمتهای بی دررو و چگالنده ی ترموسیفون نصب میشود.. انرژی مکانیکی بدست آمده از توربین که مسقیما با ژنراتور برق درگیر است؛ به الکتریسته تبدیل میشود. نتایج شبیه سازی کار حاضر نشان داد که مدلی بهبود یافته از TRC قادر به افزایش دادن کارآیی سیستم TRC معمولی میباشد. این مقاله به معرفی راه های متنوع جدید به منظور بهبود دادن به کارآیی سیستم معمولی TRC برای تامین الکتریسته ی پایدار می پردازد.. برای مثال درصد افزایشی کارآیی مفید توربین در نتیجه ی فرایند فوق گرم کردن 78/0 درصد حاصل شد.


1.        Barton, J., Huang, S., Infield, D.,  Leach, M.,  Ogunkunke, D., Torriti J.  and Thomson, M., “The evolution of electricity demand and the role for demand side participation, in buildings and transport”, Energy Policy, Vol. 52, (2013), 85-102.

2.        Boston, A., “Delivering a secure electricity supply on a low carbon pathway”,  Energy Policy, Vol. 52, (2013), 55-59.

3.        Qiu, G., Liu, H. and Riffat, S., “expanders for micro-CHP systems with Organic Rankine Oycle”, Applied Thermal Engineering, Vol. 31, (2011), 3301-3307.

4.        Valkila, N. and Saari A. “Attitude-behaviour gap in energy issue: Case study of three different Finnish resedential areas”, Energy for Sustainable Development, Vol. 17, (2013), 24-34.

5.        Kim, K.H., Ko, H.J. and Kim, S.W., “Exergy analysis of Organic Rankine Cycle with internal heat exchanger”,  International Journal of Materials, Mechanics and Manufacturing, Vol. 1, (2013), 41-45.

6.        Quoilin, S. and et al., “Techno-economic survey of Organic Rankine Cycle (ORC) systems”, Renewable and Sustainable Energy Reviews, Vol. 22, (2013), 168-186.

7.        Fiaschi, D., Manfrida, G. and Maraschiello, F., “Design and performance prediction of radial ORC turboexpanders”, Applied Energy, Vol. 138, (2015), 517-532.

8.        Tabatabaei, S.S.Z., Hashemi, A., Shojaei, A.Z. and Maysami, A., “The Manufacturing process of a 100-KW prototype microturbine as a distributed generation method in Iran”, International Journal of Engineering-Transactions A: Basic, Vol. 28, (2015), 145-153.

9.        Akbarzadeh, A., Johnson, P., Nguyen, T. and et al., “Formulation and analysis of the heat pipe turbine for production of power from renewable sources”, Applied Thermal Engineering, Vol. 21, (2001), 1551-1563.

10.     Tahir, M.B.M., Yamada, N. and Hoshino, T., “Efficiency of compact organic Rankine cycle system with rotary-van type expander for low-temperature waste heat recovery”, International Journal of Civil and Environmental Engineering, Vol. 2, (2010), 11-16.

11.     Saitoh, T., Yamada, N. and Wakashima, S., “Solar Rankine cycle system using scroll expander”, Journal of Environment and Engineering, Vol. 2, (2007), 708-719.

12.     Nguyen, T., Johnson, P., Akbarzadeh, A. and et al., “Design, manufacture and testing of closed cycle thermosyphon Rankine engine”, Heat Recovery System CHP, Vol. 15, (1995), 333- 346.

13.     Ziapour, B.M., “Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine”, Energy, Vol. 34, (2009), 1636-1641.

14.     Gorji, M., Kazemi, A. and Ganji, D.D., “Optimal thermodynamic design of turbofan engines using multi-objective genetic algorithm”, International Journal of Engineering-Transactions C: Aspects, Vol. 27, (2014), 961-970.       

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir