IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 599-607   

PDF URL: http://www.ije.ir/Vol28/No4/A/15-1934.pdf  
downloaded Downloaded: 200   viewed Viewed: 2345

Md. S. Alam and M. A. H. Khan
( Received: January 05, 2014 – Accepted: March 13, 2015 )

Abstract    The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adomian decomposition method (ADM). The velocity profiles are presented in divergent channel for various values of nanoparticle solid volume fraction, Hartmann number, Reynolds number and channel angle. The relations between velocity field with Reynolds number and channel angle with the effect of nanoparticle solid volume fraction and Hartmann number are also performed qualitatively.


Keywords    Jeffery-Hamel flow, magnetohydrodynamic, nanofluid, Hermite- Padé approximation.


چکیده    اثرات ترکیبی نانوذرات و میدان مغناطیسی در رفتار غیر خطی جریان جفری-هامل در مطالعه حاضر تحلیل شده است. معادلات حاکم عمومی به راه حل سری با استفاده از یک روش تحلیلی نیمه عددی به نام تقریبHermite- Padé حل شده است. پروفایل سرعت در کانال واگرا برای مقادیر مختلف کسر حجمی نانوذرات جامد، تعداد هارتمن، عدد رینولدز و زاویه کانال معرفی شده اند. رفتار یکه­ی غالب مساله به صورت عددی و گرافیکی تحلیل شده است. ارتباط تعیین کننده بین پارامترها به منظور مطالعه­ی ناپایداری نانو سیال بررسی شده است.


1.        Jeffery, G.B., “The two-dimensional steady motion of a viscous fluid”, Philosophical Magazine, Vol. 6, (1915), 455-465.

2.        Hamel, G., “spiralförmige bewgungen zäher flüssigkeiten”, Jahresbericht Der Deutschen Math. Vereinigung, Vol. 25, (1916), 34-60.

3.        Esmaili, Q., Ramiar, A., Alizadeh, E. and Ganji, D.D., “An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method”, Physics Letters A, Vol. 372, (2008), 3434–3439.

4.        Cha, J.E., Ahn, Y.C. and Kim, M.H., “Flow measurement with an electromagnetic flow meter in two-phase bubbly and slug flow regimes”, Flow Measurement and Instrumentation, Vol. 12(5-6), (2002), 329–339.

5.        Tendler, M., “Confinement and related transport in extrap geometry”, Nuclear Instruments and Methods in Physics Research, Vol. 207, No.(1-2), (1983), 233–240.

6.        Makinde, O.D. and Motsa, S.S., “Hydromagnetic stability of plane Poiseuille flow using Chebyshev spectral collocation method”, Journal Instruments Mathematics Computer Science, Vol. 12, No.(2), (2001), 175–183.

7.        Makinde, O. D., “Magneto-hydrodynamic stability of plane-Poiseuille flow using multi-deck asymptotic technique”, Mathematical and Computer Modelling, Vol. 37, No. (3-4), (2003), 251–259.

8.        Anwari, M., Harada, N. and Takahashi, S., “Performance of a magnetohydrodynamic accelerator using air-plasma as working gas”, Energy Conversion Management, Vol. 4, (2005), 2605–2613.

9.        Homsy, A., Koster, S., Eijkel, J.C.T., Ven der Berg, A., Lucklum, F., Verpoorte, E. and De Rooij, N. F., “A high current density DC magnetohydrodynamic (MHD) micropump”, Royal Society of Chemistry’s Lab on a Chip, Vol. 5, (2005), 466–471.

10.     Joneidi, A.A., Domairry, G. and Babaelahi, M., “Three  analytical  methods  applied  to Jeffery–Hamel flow”, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, (2010), 3423–3434. 

11.     Axford, W.I., “The Magnetohydrodynamic Jeffrey–Hamel problem for a weakly conducting fluid”, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 14, (1961), 335–351.

12.     Motsa, S.S., Sibanda, P., Awad, F.G. and Shateyi, S., “A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem”, Computers & Fluids, Vol. 39, (2010), 1219–1225.

13.     Moghimia, S.M., Ganji, D.D., Bararnia, H., Hosseini, M. and  Jalaal, M., “Homotopy perturbation method for  nonlinear  MHD Jeffery–Hamel Problem”, Computers and  Mathematics with Applications, Vol. 61, (2011), 2213–2216.

14.     Kakac, S. and Pramuanjaroenkij, A., “Review of convective heat transfer enhancement with nanofluids”, International Journal of Communications in Heat and Mass Transfer, Vol. 52, No.(13-14), (2009), 3187–3196.

15.     Rahmannezhad, J., Ramezani, A. and Kalteh, M., “Numerical investigation of magnetic field effects on Mixed convection flow in a nanofluid-filled lid-driven cavity”, International Journal of Engineering Transactions A, Vol. 26, No. 10, (2013), 1213-1224.

16.     Rostamzadeh, A., Jafarpur, K., Goshtasbirad, E and Doroodmand, M.M., “Experimental investigation of Mixed convection heat transfer in vertical tubes by nanofluid: effects of Reynolds number and fluid temperature”, International Journal of Engineering Transactions B, Vol. 27, No. 8, (2014), 1251-1258.

17.     Rahman, M.M., Al-Mazroui, W.A., Al-Hatmi, F.S., Al-Lawatia, M.A. and Eltayeb, I.A., “The role of a convective surface in models of the radiative heat transfer in nanofluids”, Nuclear Engineering and Design, Vol. 27, No.5, (2014), 282-392.

18.     Rahman, M.M., Rosca, A.V.  and Pop, I., “Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with second order slip using Buongiorno’s model”, International Journal of Heat and Mass Transfer, Vol. 77, (2014),1133-1143.

19.     Sheikholeslami, M., Ganji, D.D. and Rokni, H.B., “Nanofluid Flow in a Semi-porous Channel in the Presence of Uniform Magnetic Field”, International Journal of Engineering Transactions C, Vol. 26, No. 6, (2013), 653–662.

20.     Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R. and Rokni, H.B., “Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method”, Applied Mathematics and Mechanics (English Edition) Vol.33, (2012), 25–36.

21.     Aminossadati, S.M. and Ghasemi, B., “Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure”, European Journal of Mechanics - B/Fluids , Vol. 28, (2009), 630–640.

22.     Padé, H., “Sur la représentation approchée d'une fonction pour des fractions rationnelles”, Ann. Sci. École Norm. Sup. Suppl., Vol. 9, (1892), 1-93.

23.     Hermite, C., “Sur la généralisation des fractions continues algébriques”, Annali di Mathematica Pura e Applicata, Vol. 21(2), (1893), 289-308.

24.     Drazin, P.G. and Tourigny, Y., “Numerically study of bifurcation by analytic continuation of a function defined by a power series”, SIAM Journal of Applied Mathematics, Vol. 56, (1996), 1-18.

25.     Khan, M.A.H., “High-Order Differential Approximants”, Journal of Computational and Applied Mathematics, Vol. 149, (2002), 457-468     .

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir