Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 608-617   

PDF URL: http://www.ije.ir/Vol28/No4/A/16-1932.pdf  
downloaded Downloaded: 388   viewed Viewed: 2571

  A PARAMETRIC STUDY ON EXERGY AND EXERGOECONOMIC ANALYSIS OF A DIESEL ENGINE BASED COMBINED HEAT AND POWER SYSTEM
 
M. H. Seyyedvalilu, F. Mohammadkhani and S. Khalilarya
 
( Received: October 11, 2014 – Accepted: January 29, 2015 )
 
 

Abstract    This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based on specific exergy costing (SPECO) method. Finally a parametric study is used to show effect of ambient temperature on important energy, exergy and exergoeconomic parameters of the CHP system. Also effects of change in compressor pressure ratio and turbine inlet temperature on these parameters are investigated in different environment temperatures. The results show that increasing ambient temperature increases the work output, heating power and exergoeconomic factor and decreases the exergetic efficiency and cost of exergy destruction. Increasing compressor pressure ratio leads to increase in the work output, heating power, exergetic efficiency, and exergy destruction cost and exergoeconomic factor of the CHP system in all environment temperatures. Also increasing turbine inlet temperature decreases the work output, exergetic efficiency and exergoeconomic factor while increases the heating power as well as exergy destruction cost in all environment temperatures.

 

Keywords    Energy, exergy, exergoeconomics, SPECO, Diesel engine, CHP

 

چکیده    این مقاله تحلیل اگزرژی، اگزرژواکونومیک و بررسی پارامتری یک سیستم تولید همزمان برق و حرارت بر پایه موتور دیزل را که kW 277 برق و kW 282 گرما تولید می­کند ارائه می­نماید. بدین منظور ابتدا تحلیل ترمودینامیکی سیستم تولید همزمان بر پایه انرژی و اگزرژی انجام شده است. سپس تعادل هزینه و معادلات کمکی برای هر یک از اجزا نوشته شده­اند. تحلیل اگزرژواکونومیک بر پایه روش هزینه­دهی به اگزرژی ویژه انجام شده است. در نهایت یک مطالعه پارامتری به منظور نشان دادن اثر تغییر دمای محیط بر پارامترهای مهم انرژی، اگزرژی و اگزرژواکونومیک سیستم انجام شده است. همچنین تاثیر تغییرات نسبت فشار کمپرسور و دمای ورودی توربین در دماهای مختلف محیط بر این پارامترها بررسی شده است. نتایج مطالعه نشان می­دهد که افزایش دمای محیط باعث افزایش کار و گرمای خروجی و ضریب اگزرژواکونومیک شده و بازده اگزرژی و هزینه تخریب اگزرژی را کاهش می­دهد. افزایش نسبت فشار کمپرسور منجر به افزایش کار و گرمای خروجی، بازده اگزرژی، هزینه تخریب اگزرژی و ضریب اگزرژواکونومیک سیستم تولید همزمان در همه دماهای محیط می­شود. همچنین افزایش دمای ورودی توربین باعث کاهش کار خروجی، بازده اگزرژی و ضریب اگزرژواکونومیک می­شود در حالیکه گرمای خروجی و هزینه تخریب اگزرژی را در همه دماها افزایش می­دهد.

References   

1.        Behboodi Kalhori, S., Rabiei, H. and Mansoori, Z., “Mashad trigeneration potential – An opportunity for CO2 abatement in Iran”, Energy Conversion and Management, Vol. 60, (2012), 106–114.

2.        Coelho, M., Nash, F., Linsell, D. and Barciela, J.P., “Cogeneration–the development and implementation of a cogeneration system for a chemical plant, using a reciprocating heavy fuel oil engine with a supplementary fired boiler”, Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, Vol. 217, (2003), 493–503.

3.        Rosen, M.A., Le, M.N. and Dincer, I., “Eciency analysis of a cogeneration and district energy system”, Applied Thermal Engineering, Vol. 25, (2005), 147–159.

4.        Bidini, G., Desideri, U., Saetta, S. and Bocchini, P.P., “Internal combustion engine combined heat and power plants: case study of the university of Perugia power plant”, Applied Thermal Engineering, Vol. 18, (1998), 401–412.

5.        Abusoglu, A. and Kanoglu, M., “Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 – Formulations”, Applied Thermal Engineering, Vol. 29, (2009), 234–241.

6.        Kasaeian, A.B., Dehghani Mobarakeh, M., Golzari, S. and Akhlaghi, M.M., “Energy and Exergy Analysis of Air PV/T Collector of Forced Convection with and without Glass Cover”, International Journal of Engineering Transaction B: Application, Vol. 26, No. 8, (2013), 913–926.

7.        Abusoglu, A. and Kanoglu, M., “Exergoeconomic analysis and optimization of combined heat and power production: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, (2009), 2295–2308.

8.        Valero, A., Lozano, M.A., Serra, L., Tsatsaronis, G., Pisa, J., Frangopoulos, Ch. and Von Spakovsky, M.R. “CGAM problem: definition and conventional solution”, Energy–The International Journal, Vol. 19, (1994), 279–286.

9.        Valero, A., Lozano, M.A., Serra, L. and Torres, C., “Application of the exergetic cost theory to the CGAM problem”, Energy – The International Journal, Vol. 19, (1994), 365–381.

10.     Cardona, E. and Piacentio, A., “A new approach to exergoeconomic analysis and design of variable demand energy systems”, Energy, Vol. 31, (2006), 490–515.

11.     Colpan, C.O. and Yesin, T., “Energetic, exergetic and thermoeconomic analysis of Bilkent combined cycle cogeneration plant”, International Journal of Energy Research, Vol. 30, (2006), 875–894.

12.     Kanoglu, M., Ayanoglu, A. and Abusoglu, A., “Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system”, Energy, Vol. 36, (2011), 4422–4433.

13.     Aceves, S.M., Martinez–Frias, J. and Reistad, G.M., “Analysis of Homogeneous Charge Compression Ignition (HCCI) engines for cogeneration applications”, Journal of Energy Resources Technology –ASME, Vol. 128, (2006), 16–27.

14.     Tsatsaronis, G., “Definitions and nomenclature in exergy analysis and exergoeconomics”, Energy, Vol. 32, (2007), 249–253.

15.     Lazzaretto, A. and Tsatsaronis, G., “SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems”, Energy, Vol. 31, (2006), 1257–1289.

16.     Rath, M.K., Acharya, S.K., Patnnaik, P.P. and Roy, S., “Exergy and Energy Analysis of Diesel Engine using Karanja Methyl Ester under Varying Compression Ratio”, International Journal of Engineering Transaction B: Application, Vol. 27, No. 8, (2014), 1259–1268.

17.     Kreith, F., “The CRC Handbook of Thermal Engineering”, CRC Press, Florida, USA (2000).

18.     Sharqawy, M.H., Lienhard, J.H. and Zubair, S.M., “On exergy calculations of seawater with applications in desalination systems”, International Journal of Thermal Sciences, Vol. 50, (2011), 187–196.

19.     Jafarmadar, S., “The Numerical Exergy Analysis of H2/Air Combustion with Detailed Chemical Kinetic Simulation Model”, International Journal of Engineering Transaction C: Aspects, Vol. 25, No. 3, (2012), 239–247.

20.     Srinivas, T., Gupta, A.V. and Reddy, B.V., “Sensitivity analysis of STIG based combined cycle with dual pressure HRSG”, International Journal of Thermal Sciences, Vol. 47, (2008), 1226–1234.

21.     Balli, O., Aras, H. and Hepbasli, A., “Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part I – Methodology”, Energy Conversion and Management, Vol. 51, (2010), 2252–2259.

22.     Kim, K.H., Ko, H.J. and Perez–Blanco, H., “Exergy analysis of gas-turbine systems with high fogging compression”, International Journal of Exergy, Vol. 8, (2011), 16–32.

23.     Klein, S.A. and Alvarda, S.F., Engineering Equation Solver (EES), F–Chart software (2007).

24.     Baghernejad, A. and Yaghoubi, M., “Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm”, Energy Conversion and Management, Vol. 52, (2011), 2193–2203.

25.     Sanaye, S., Aghaei Meybodi, M. and Shokrollahi, Sh., “Selecting the prime movers and nominal powers in combined heat and power systems”, Applied Thermal Engineering, Vol. 28, (2008), 1177–1188.

26.     Cheddie, D.F. and Murray, R., “Thermo–economic modeling of a solid oxide fuel cell/gas turbine power plant with semi–direct coupling and anode recycling”, International Journal of Hydrogen Energy, Vol. 35, (2010), 11208–11215.

27.     Mohammadkhani, F., Khalilarya, Sh. and Mirzaee, I., “Exergy and exergoeconomic analysis and optimisation of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm”, International Journal of Exergy, Vol. 12, No. 2, (2013), 139–161.

28.     Sahoo, P.K., “Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming”, Applied Thermal Engineering, Vol. 28, (2008), 1580–1588.

29.     Tsatsaronis, G. and Pisa, J., “Exergoeconomic evaluation and optimization of energy systems – application to the CGAM problem”, Energy – The International Journal, Vol. 19, (1994), 287–321.

30.     I.R of Iran Meteorological Organization (IRIMO). http://www.chaharmahalmet.ir/stat/archive/iran/teh/TEHRAN/5.asp (accessed 6 July 2012). 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir