Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 634-641   

PDF URL: http://www.ije.ir/Vol28/No4/A/19-1931.pdf  
downloaded Downloaded: 120   viewed Viewed: 1826

  DESIGN OF DIRECT EXPONENTIAL OBSERVERS FOR FAULT DETECTION OF NONLINEAR MEMS TUNABLE CAPACITOR
 
H. Mobki, M. Sadeghi and G. Rezazadeh
 
( Received: September 06, 2014 – Accepted: January 29, 2015 )
 
 

Abstract    In this paper a novel method is proposed for construction of an exponential observer for nonlinear system. The presented method is based on direct solution of dynamic error without any linearzing of nonlinear terms. Necessary and sufficient conditions for construction of direct observer are presented. Stability of the observer is checked using Lyapunov theorem. Also the ability of this observer is checked with implementing of observer for fault detection of micro tunable capacitor subjected to nonlinear electrostatic force.

 

Keywords    nonlinear observer, exponential observer, Lyapunov theorem, micro tunable capacitor

 

چکیده    در این مقاله روش جدیدی برای ساخت روئیتگر نمایی برای سیستم غیرخطی ارائه شده است. روش ارائه شده بر پایه حل معادله دیفرانسیل خطای دینامیکی بدون هر گونه خطی سازی می باشد. شرایط لازم و کافی برای تشکیل روئیتگر مشخص شده و پایداری روئیتگر با استفاده از تئوری لیاپانوف بررسی شده است. همچنین توانایی روئیتگر در عیب یابی میکرو خازن قابل تنظیم که تحت تاثیر نیروی غیر خطی الکترواستاتیک قرار دارد بررسی شده است.

References   

 

1.     Liu, J., "Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection", Measurement Science and Technology,  Vol. 23, No. 5, (2012), 1-11.

2.     Abid, M., "Fault detection in nonlinear systems: An observer-based approach",PHd thesis, Universit¨at Duisburg-Essen, (2010).

3.     Luenberger, D.G., "Observers for multivariable systems", Automatic Control, IEEE Transactions on,  Vol. 11, No. 2, (1966), 190-197.

4.     Thau, F.E., "Observing the states of nonlinear dynamical systems", Internat. J. Control,  Vol. 18, (1973), 471-479.

5.     Xia, X.-h. and Gao, W.-b., "On exponential observers for nonlinear systems", Systems & Control Letters,  Vol. 11, No. 4, (1988), 319-325.

6.     Kou, S.R., Elliott, D.L. and Tarn, T.J., "Exponential observers for nonlinear dynamical systems", Inform. Control,  Vol. 29, (1975), 204-216.

7.     Bastin, G. and Gevers, M., "Stable adaptive observers for nonlinear time-varying systems", Automatic Control, IEEE Transactions on,  Vol. 33, No. 7, (1988), 650-658.

8.     Marino, R. and Tomei, P., "Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems", Automatic Control, IEEE Transactions on, Vol. 40, No. 7, (1995), 1300-1304.

9.     Marino, R. and Tomei, P., "Nonlinear control design. Information and system sciences, London, New York: Prentice-Hall,  (1995).

10.   Xu, A. and Zhang, Q., "Nonlinear system fault diagnosis based on adaptive estimation", Automatica,  Vol. 40, No. 7, (2004), 1181-1193.

11.   Bestle, D. and M. Zeitz., "Canonical form observer design for nonlinear time-varying systems", International Journal of Control,  Vol. 38, (1983), 419-431.

12.   Krener, A.J. and Isidori, A., "Linearization by output injection and nonlinear observers", Systems & Control Letters,  Vol. 3, No. 1, (1983), 47-52.

13.   Krener, A.J. and Respondek, W., "Nonlinear observers with linearizable error dynamics", SIAM Journal on Control and Optimization,  Vol. 23, No. 2, (1985), 197-216.

14.   Xia, X.H. and Gao, W.B., "Nonlinear observer design by canonical form", International Journal of Control,  Vol. 47, (1988), 1081-1100.

15.   Gauthier, J.P., Hammouri, H. and Kupka, I., "Observers for nonlinear systems", Proc. 30th IEEE Conf. Decision and Control,  Vol. 2, (1991), 1483-1489.

16.   Gauthier, J.P., Hammouri, H. and Othman, S., "A simple observer for nonlinear systems applications to bioreactors", Automatic Control, IEEE Transactions on,  Vol. 37, No. 6, (1992), 875-880.

17.   Sundarapandian, V., "Exponential observers for lotka-volterra systems", International Journal on Computer Science and Engineering (IJCSE), Vol. 3, No. 3, (2011), 312-321

18.   Raghavan, S. and Hedrick, J.K., "Observer design for a class of nonlinear systems", International Journal of Control,  Vol. 59, No. 2, (1994), 515-528.

19.   Rajamani, R., "Observers for lipschitz nonlinear systems", Automatic Control, IEEE Transactions on, Vol. 43, No. 3, (1998), 397-401.

20.   Mobki, H., Rezazadeh, G., Sadeghi, M., Vakili-Tahami, F. and Seyyed-Fakhrabadi, M.-M., "A comprehensive study of stability in an electro-statically actuated micro-beam", International Journal of Non-Linear Mechanics,  Vol. 48, No., (2013), 78-85.

21.   Shavezipur, M., Khajepour, A. and Hashemi, S., "The application of structural nonlinearity in the development of linearly tunable mems capacitors", Journal of Micromechanics and Microengineering,  Vol. 18, No. 3, (2008) 93-102.

22.   Taghizadeh, M. and Mobki, H., "Bifurcation analysis of torsional micromirror actuated by electrostatic forces", Archives of Mechanics,  Vol. 66, No. 2, (2014), 95-111.

23.   Abbasnejad, B., Shabani, R. and Rezazadeh, G., "Stability analysis in parametrically excited electrostatic torsional micro-actuators", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 487-498.

24.   Taybi, M. and Ganji, B., "The effect of corrugations on mechanical sensitivity of diaphragm for mems capacitive microphone", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 11, (2013), 1323-1330.

25.   Ganji, B.A. and Majlis, B.Y., "Fabrication and characterization of a new mems capacitive microphone using perforated diaphragm", International Journal of Engineering,  Vol. 22, No. 2, (2009), 153-160.

26.   Ganji, B.A. and Nateri, M., "Fabrication of a novel mems capacitive microphone using lateral slotted diaphragm", International Journal of Engineering-Transactions B: Applications,  Vol. 23, No. 3&4, (2010), 191-200.

27.   Ren, Q. and Zhao, Y.-P., "Influence of surface stress on frequency of microcantilever-based biosensors", Microsystem Technologies,  Vol. 10, No. 4, (2004), 307-314.

28.   Rezazadeh, G., Rashvand, K. and Madinei, H., "Effect of length-scale parameter on pull-in voltage and natural frequency of a micro-plate", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 375-384.

29.   Rashvand, K., Rezazadeh, G., Mobki, H. and Ghayesh, M.H., "On the size-dependent behavior of a capacitive circular micro-plate considering the variable length-scale parameter", International Journal of Mechanical Sciences, Vol. 77, (2013), 333-342.

30.   Mobki, H., Sadeghi, M.H., Afrang, S. and Rezazadeh, G., "On the tunability of a mems based variable capacitor with a novel structure", Microsystem Technologies, Vol. 17, No. 9, (2011), 1447-1452.

31.   Mobki, H., Rashvand, K., Afrang, S., Sadegh, M.H. and Rezazadeh, G., "Design, simulation and bifurcation analysis of a novel micromachined tunable capacitor with extended tunability", Transactions of the Canadian Society for Mechanical Engineering, Vol. 38, No. 1, (2014), 15-29.

32.   Asgary, R., Mohammadi, K. and Zwolinski, M., "Using neural networks as a fault detection mechanism in mems devices", Microelectronics Reliability, Vol. 47, No. 1, (2007), 142-149.

33.   Reppa, V. and Tzes, A., "Application of set membership identification for fault detection of mems", in Robotics and Automation, ICRA 2006. Proceedings 2006 IEEE International Conference on, IEEE, (2006), 643-648.

34.   Tiong, S.H. and Ali, M., "Faults detection approach for self-testable rf mems", in 2006 IEEE International Conference on Semiconductor Electronics, (2006), 329-333.

35.   Izadian, A. and Famouri, P., "Fault diagnosis of mems lateral comb resonators using multiple-model adaptive estimators", Control Systems Technology, IEEE Transactions on,  Vol. 18, No. 5, (2010), 1233-1240.

36.   Shavezipur, M., Nieva, P., Khajepour, A. and Hashemi, S., "Development of parallel-plate-based mems tunable capacitors with linearized capacitance–voltage response and extended tuning range", Journal of Micromechanics and Microengineering,  Vol. 20, No. 2, (2010).

37.   Lin, W.-H. and Zhao, Y.-P., "Nonlinear behavior for nanoscale electrostatic actuators with casimir force", Chaos, Solitons & Fractals,  Vol. 23, No. 5, (2005), 1777-1785.

38.   Lange, D., Hagleitner, C., Hierlemann, A., Brand, O. and Baltes, H., "Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds", Analytical Chemistry,  Vol. 74, No. 13, (2002), 3084-3095.

39.   Nayfeh, A.H., Ouakad, H., Najar, F., Choura, S. and Abdel-Rahman, E., "Nonlinear dynamics of a resonant gas sensor", Nonlinear Dynamics,  Vol. 59, No. 4, (2010), 607-618.

40.   Rittenhouse, S.A., "Diagnosis of operational changes in microelectromechanical systems via fault detection", West Virginia University Libraries,  (2004).


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir