IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 583-592   

PDF URL: http://www.ije.ir/Vol28/No4/A/13-1928.pdf  
downloaded Downloaded: 299   viewed Viewed: 2122

A. Khalkhali, E. Nikghalb and M. Norouzian
( Received: July 02, 2014 – Accepted: January 29, 2015 )

Abstract    In design and fabricate drive shafts with high value of fundamental natural frequency that represented high value of critical speed; using composite materials instead of typical metallic materials could provide longer length shafts with lighter weight. In this paper, multi-objective optimization (MOP) of a composite drive shaft is performed considering three conflicting objectives: fundamental natural frequency, critical buckling torque and weight of the shaft. Fiber orientation angle, ply thickness and stacking sequence are also considered as the design variables in this MOP. To solve this MOP, Modified Non-Dominated Sorting Genetic Algorithm (modified NSGA II) is employed. To calculate fundamental natural frequency and critical buckling torque, finite element model of a truck composite drive shaft has been carried out using commercial software ABAQUS/Standard. Finally optimum design points are obtained and from all non-dominated optimum design points, some trade-off points are picked using multi-criteria decision analysis methods and the points are discussed.


Keywords    Drive shaft, Composite tube, Multi-objective optimization, Finite element method, Modified NSGA II algorithm


چکیده    استفاده از مواد کامپوزیتی در طراحی و ساخت محورهای محرک سبب افزایش فرکانس طبیعی اولیه محور محرک و در نتیجه افزایش سرعت بحرانی آن شده و در مقایسه با مدل­های فلزی، محورهایی با طول بزرگتر و وزن کمتر ارائه می­کند. در این مقاله، بهینه­سازی چندهدفی یک محور محرک کامپوزیتی با در نظر گرفتن سه هدف ناسازگار مورد توجه قرار گرفت: فرکانس طبیعی اولیه، گشتاور کمانش بحرانی و وزن محور. زاویه جهت­گیری فیبرها، ضخامت هر لایه و ترتیب لایه­چینی، به عنوان متغیرهای طراحی در مسئله بهینه­سازی در نظر گرفته شدند. روش NSGA-II در فرآیند بهینه­سازی چند هدفی به کار گرفته شد. برای محاسیه فرکانس طبیعی اولیه و گشتاور کمانش بحرانی، مدل المان محدود محور محرک یک خودروی باری در نرم­افزار ABAQUS/Standard مورد استفاده قرار گرفته است. در نهایت نقاط طراحی بهینه استخراج شدند و از میان این نقاط طراحی غیر برتر، بعضی نقاط مصالحه شده به کمک روش­ تصمیم­گیری چند معیاری TOPSIS انتخاب شده و مورد بحث قرار گرفته­اند.



1.     Schmelz, F., Seherr-Thoss, C.H.-C. and Aucktor, E., Designing joints and driveshafts, in Universal joints and driveshafts. (1992), 79-169.

2.     Kim, C.-D. and Bert, C.W., "Critical speed analysis of laminated composite, hollow drive shafts", Composites Engineering,  Vol. 3, No. 7, (1993), 633-643.

3.     Bert, C.W. and Kim, C.-D., "Analysis of buckling of hollow laminated composite drive shafts", Composites Science and Technology,  Vol. 53, No. 3, (1995), 343-351.

4.     Kim, H.S., Kim, J.W. and Kim, J.K., "Design and manufacture of an automotive hybrid aluminum/composite drive shaft", Composite Structures,  Vol. 63, No. 1, (2004), 87-99.

5.     Shokrieh, M.M., Hasani, A. and Lessard, L.B., "Shear buckling of a composite drive shaft under torsion", Composite Structures,  Vol. 64, No. 1, (2004), 63-69.

6.     Mutasher, S., "Prediction of the torsional strength of the hybrid aluminum/composite drive shaft", Materials & Design,  Vol. 30, No. 2, (2009), 215-220.

7.     Talib, A.A., Ali, A., Badie, M.A., Lah, N.A.C. and Golestaneh, A., "Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft", Materials & Design,  Vol. 31, No. 1, (2010), 514-521.

8.     Badie, M., Mahdi, E. and Hamouda, A., "An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft", Materials & Design,  Vol. 32, No. 3, (2011), 1485-1500.

9.     Lee, D., Gonzalez, L.F., Periaux, J., Srinivas, K. and Onate, E., "Hybrid-game strategies for multi-objective design optimization in engineering", Computers & Fluids,  Vol. 47, No. 1, (2011), 189-204.

10.   Guillen-Gosalbez, G., "A novel milp-based objective reduction method for multi-objective optimization: Application to environmental problems", Computers & Chemical Engineering,  Vol. 35, No. 8, (2011), 1469-1477.

11.   Bekker, J. and Aldrich, C., "The cross-entropy method in multi-objective optimisation: An assessment", European Journal of Operational Research,  Vol. 211, No. 1, (2011), 112-121.

12.   Azizmohammadi, R., Amiri, M., Tavakkoli-Moghaddam, R. and Mohammadi, M., "Solving a redundancy allocation problem by a hybrid multi-objective imperialist competitive algorithm", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 9, (2013), 1031-1042.

13.   Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., "A fast and elitist multiobjective genetic algorithm: Nsga-ii", Evolutionary Computation, IEEE Transactions on,  Vol. 6, No. 2, (2002), 182-197.

14.   Jamali, A., Nariman-Zadeh, N., Darvizeh, A., Masoumi, A. and Hamrang, S., "Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process", Engineering Applications of Artificial Intelligence,  Vol. 22, No. 4, (2009), 676-687.

15.   Khakhali, A., Nariman-Zadeh, N., Darvizeh, A., Masoumi, A. and Notghi, B., "Reliability-based robust multi-objective crashworthiness optimisation of s-shaped box beams with parametric uncertainties", International Journal of Crashworthiness,  Vol. 15, No. 4, (2010), 443-456.

16.   Khalkhali, A. and Safikhani, H., "Pareto based multi-objective optimization of a cyclone vortex finder using cfd, gmdh type neural networks and genetic algorithms", Engineering Optimization,  Vol. 44, No. 1, (2012), 105-118.

17.   Khalkhali, A., Narimanzadeh, N., Khakshournia, S. and Amiri, S., "Optimal design of sandwich panels using multi-objective genetic algorithm and finite element method", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 395-402.

18.   Gorji, M., Kazemi, A. and Ganji, D., "Optimal thermodynamic design of turbofan engines using multi-objective genetic algorithm", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 6, (2013), 961-970.

19.   Cook, R.D., "Concepts and applications of finite element analysis, John Wiley & Sons,  (2007).

20.   Hibbitt, H., Karlsson, B. and Sorensen, P., "Abaqus analysis user’s manual version 6.10", Dassault Systèmes Simulia Corp.: Providence, RI, USA,  (2011).

21.   Coello, C. and Christiansen, A.D., "Multiobjective optimization of trusses using genetic algorithms", Computers & Structures,  Vol. 75, No. 6, (2000), 647-660.

22.   Osyczka, A., "Multicriteria optimization for engineering design", Design Optimization,  Vol. 1, (1985), 193-227.

23.   Srinivas, N. and Deb, K., "Muiltiobjective optimization using nondominated sorting in genetic algorithms", Evolutionary Computation,  Vol. 2, No. 3, (1994), 221-248.

24.   Fonseca, C.M. and Fleming, P.J., "Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization", in ICGA. Vol. 93, (1993), 416-423.

25.   Coello, C.A.C., Van Veldhuizen, D.A. and Lamont, G.B., "Evolutionary algorithms for solving multi-objective problems, Springer,  Vol. 242,  (2002).

26.   Pareto, V., "Cours d'economie politique, Librairie Droz,  (1964).

27.   Goldberg, D., "Genetic algorithms in search, optimization, and machine learning, addison-wesley, reading, ma, 1989", NN Schraudolph and J..  Vol. 3, No. 1.

28.   Toffolo, A. and Benini, E., "Genetic diversity as an objective in multi-objective evolutionary algorithms", Evolutionary Computation,  Vol. 11, No. 2, (2003), 151-167.

29.   Gwo-Hshiung, T., "Multiple attribute decision making: Methods and applications", Multiple Attribute Decision Making: Methods and Applications,  (2010). 

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir