Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 567-572   

PDF URL: http://www.ije.ir/Vol28/No4/A/11-1927.pdf  
downloaded Downloaded: 198   viewed Viewed: 2045

  CONDUCTIVE POLYTHIOPHENE NANOPARTICLES DEPOSITION ON TRANSPARENT PET SUBSTRATES: EFFECT OF MODIFICATION WITH HYBRID ORGANIC-INORGANIC COATING (RESEARCH NOTE)
 
M. Mohammadizadeh, B. Pourabbas, K. Foroutani and M. Fallahian
 
( Received: August 03, 2014 – Accepted: January 29, 2015 )
 
 

Abstract    In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were deposited on the surfaces using chemical deposition method. A facile and rapid chemical oxidative deposition method using a binary organic solvent system during 12 min of reaction time was used and the effect of surface modification by hybrid coating on morphology of PTh nanoparticles were studied. The optical transparency of PTh nanoparticles coated on PET films characterized by UV-Vis spectroscopy. Field-emission scanning electron microscopy (SEM) and laser particle-size analysis were used to study surface morphology, average size and size distribution of PTh nanoparticles. Electrical conductivity of PET substrate deposited by PTh nanoparticles was measured using four probe to be 1.7×10-5 S/cm.

 

Keywords    Polymers; Hybrid organic-inorganic, Electrical conductivity; nanostructures

 

چکیده    در این مقاله بستر پلی اتیلن ترفتالات با استفاده از محلول پتاسیم هیدروکساید حاوی پلی کاپرولاکتان به عنوان فاز آلی و تترا اتوکسی سیلان به عنوان فاز معدنی اصلاح گردید. پوشش با با فرایند سل-ژل تهیه گردیدو با دیپ کوتر روس سطح اعمال گردید. سپس، نانوذرات پلی تیوفن رسانای الکتریسیته با روش لایه نشانی شیمیایی روی سطح لایه نشانی شدند.یک روش لایه نشانی اکسیداسیونی سریع و راحت با استفاده از یک سیستم محلول دوتایی آلی در طی مدت 12 دقیقه زمان واکنش استفاده شد و اثر اصلاح سطح با پوشش هیبریدی بر روی مورفولوژی نانوذرات پلی تیوفن بررسی و مطالعه گردید. شفافیت نوری نانوذرات پلی تیوفن پوشش داده شده بر روی سطح با طیف نمایی ماوراء بنفش مطالعه شد. میکروسکوپ الکترونی روبش میدانی و آنالیز اندازه ذرات با لیزر برای مطالعه ی مورفولوژی سطح، متوسط اندازه ذرات و توزیع اندازه نانوذرات پلی تیوفن استفاده گردید. رسانایی الکتریکی نانوذرات پلی تیوفن لایه نشانی شده برروی سطح با استفاده از فورپراب اندازه گیری شد و مقدار آن برابر 1.7×10-5 S/cm است.

References   

 

1.     Chujo, Y., "Organic-inorganic nano-hybrid materials", Kona,  Vol. 25, (2007), 255-260.

2.     Yuan, J. and Müller, A.H., "One-dimensional organic–inorganic hybrid nanomaterials", Polymer,  Vol. 51, No. 18, (2010), 4015-4036.

3.     Sanchez, C., Belleville, P., Popall, M. and Nicole, L., "Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market", Chemical Society Reviews,  Vol. 40, No. 2, (2011), 696-753.

4.     Hsiao Shu, C., Chiang, H.C., ChienChao Tsiang, R., Liu, T.J. and Wu, J.J., "Synthesis of organic–inorganic hybrid polymeric nanocomposites for the hard coat application", Journal of Applied Polymer Science,  Vol. 103, No. 6, (2007), 3985-3993.

5.     Saccani, A., Toselli, M., Messori, M., Fabbri, P. and Pilati, F., "Electrical behavior of pet films coated with nanostructured organic–inorganic hybrids", Journal of Applied Polymer Science,  Vol. 102, No. 5, (2006), 4870-4877.

6.     Jin, J., Lee, J.J., Bae, B.-S., Park, S.J., Yoo, S. and Jung, K., "Silica nanoparticle-embedded sol–gel organic/inorganic hybrid nanocomposite for transparent oled encapsulation", Organic Electronics,  Vol. 13, No. 1, (2012), 53-57.

7.     Tripathi, B.P. and Shahi, V.K., "Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Progress in Polymer Science,  Vol. 36, No. 7, (2011), 945-979.

8.     Boroumandnia, A., Kasaeian, A., Nikfarjam, A. and Mohammadpour, R., "Effect of tio2 nanofiber density on organic-inorganic based hybrid solar cells", International Journal of Engineering (1025-2495),  Vol. 27, No. 7, (2014).

9.     Wang, S., Kang, Y., Wang, L., Zhang, H., Wang, Y. and Wang, Y., "Organic/inorganic hybrid sensors: A review", Sensors and Actuators B: Chemical,  Vol. 182, (2013), 467-481.

10.   Iotti, M., Fabbri, P., Messori, M., Pilati, F. and Fava, P., "Organic–inorganic hybrid coatings for the modification of barrier properties of poly (lactic acid) films for food packaging applications", Journal of Polymers and the Environment,  Vol. 17, No. 1, (2009), 10-19.

11.   Khalili, R. and Eisazadeh, H., "Preparation and characterization of polyaniline/sb2o3 nanocomposite and its application for removal of pb (іі) from aqueous media", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 2, (2013), 239-246.

12.   Maity, S., Bhunia, C.T. and Sahuc, P.P., "Experimental study of some effective surface parameters of crystalline silicone sollar cell for getting better performance", International Journal of Engineering (1025-2495),  Vol. 28, No. 1, (2015), 81-87.

13.   Boroumandnia, A., Kasaeian, A.B., Nikfarjam, A.R. and Mohammadpour, R., "Effect of tio2 nanofiber density of organic-inorganic based hybrid solar cells”", International Journal of Engineering (1025-2495),  Vol. 27, No. 7, (2014), 1133-1138.

14.   Kickelbick, G., "Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale", Progress in Polymer Science,  Vol. 28, No. 1, (2003), 83-114.

15.   Xiao, T., Cui, W., Anderegg, J., Shinar, J. and Shinar, R., "Simple routes for improving polythiophene: Fullerene-based organic solar cells", Organic Electronics,  Vol. 12, No. 2, (2011), 257-262.

16.   Perepichka, I.F., Perepichka, D.F., Meng, H. and Wudl, F., "Lightemitting polythiophenes", Advanced Materials,  Vol. 17, No. 19, (2005), 2281-2305.

17.   Schopf, G. and Koßmehl, G., "Polythiophenes-electrically conductive polymers, Springer Berlin,  Vol. 129,  (1997).

18.   Senthilkumar, B., Thenamirtham, P. and Selvan, R.K., "Structural and electrochemical properties of polythiophene", Applied Surface Science,  Vol. 257, No. 21, (2011), 9063-9067.

19.   Jo, Y., Hong, C. and Kwak, J., "Improved electrical and optical properties of ito thin films by using electron beam irradiation and their application to uv-led as highly transparent p-type electrodes", Current Applied Physics,  Vol. 11, No. 4, (2011), S143-S146.

20.   Havare, A.K., Can, M., Demic, S., Okur, S., Kus, M., Aydın, H., Yagmurcukardes, N. and Tari, S., "Modification of ito surface using aromatic small molecules with carboxylic acid groups for oled applications", Synthetic Metals,  Vol. 161, No. 21, (2011), 2397-2404.

21.   Mohammadizadeh, M., Pourabbas, B., Mahmoodian, M., Foroutani, K. and Fallahian, M., "Facile and rapid production of conductive flexible films by deposition of polythiophene nanoparticles on transparent poly (ethyleneterephthalate): Electrical and morphological properties", Materials Science in Semiconductor Processing,  Vol. 20, (2014), 74-83.

22.   Laskarakis, A., Logothetidis, S., Kassavetis, S. and Papaioannou, E., "Surface modification of poly (ethylene terephthalate) polymeric films for flexible electronics applications", Thin Solid Films,  Vol. 516, No. 7, (2008), 1443-1448.

23.   Lee, S., Byun, E.Y., Kim, J.K. and Kim, D.G., "Ar and o2 linear ion beam pet treatments using an anode layer ion source", Current Applied Physics,  Vol. 14, (2014), 180-182.

24.   Liu, X.-D., Sheng, D.-K., Gao, X.-M., Li, T.-B. and Yang, Y.-M., "Uv-assisted surface modification of pet fiber for adhesion improvement", Applied Surface Science,  Vol. 264, (2013), 61-69.

25.   Esena, P., Zanini, S. and Riccardi, C., "Plasma processing for surface optical modifications of pet films", Vacuum,  Vol. 82, No. 2, (2007), 232-235.

26.   Junkar, I., Vesel, A., Cvelbar, U., Mozetič, M. and Strnad, S., "Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (pet) polymers", Vacuum,  Vol. 84, No. 1, (2009), 83-85.

27.   Lee, C.-W., Park, H.-S., Kim, J.-G., Choi, B.-K., Joo, S.-W. and Gong, M.-S., "Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes", Sensors and Actuators B: Chemical,  Vol. 109, No. 2, (2005), 315-322.

28.   Xu, M., Zhang, J., Wang, S., Guo, X., Xia, H., Wang, Y., Zhang, S., Huang, W. and Wu, S., "Gas sensing properties of sno 2 hollow spheres/polythiophene inorganic–organic hybrids", Sensors and Actuators B: Chemical,  Vol. 146, No. 1, (2010), 8-13.

29.   Foroutani, K., Pourabbas, B., Sharif, M., Mohammadizadeh, M., Fallahian, M. and Khademi, S., "Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate", Materials Science in Semiconductor Processing,  Vol. 18, (2014), 6-14.

30.   Messori, M., Toselli, M., Pilati, F., Fabbri, E., Fabbri, P., Busoli, S., Pasquali, L. and Nannarone, S., "Flame retarding poly (methyl methacrylate) with nanostructured organic–inorganic hybrids coatings", Polymer,  Vol. 44, No. 16, (2003), 4463-4470.

31.   Toselli, M., Marini, M., Fabbri, P., Messori, M. and Pilati, F., "Sol–gel derived hybrid coatings for the improvement of scratch resistance of polyethylene", Journal of Sol-Gel Science and Technology,  Vol. 43, No. 1, (2007), 73-83.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir