IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 537-545   

PDF URL: http://www.ije.ir/Vol28/No4/A/7-1923.pdf  
downloaded Downloaded: 162   viewed Viewed: 1639

K. Kanjanawanishkul
( Received: October 06, 2014 – Accepted: January 29, 2015 )

Abstract    In this paper, the path following controller of an omnidirectional mobile robot (OMR) has been extended in such a way that the forward velocity has been optimized and the actuator velocity constraints have been taken into account. Both have been attained through the proposed model predictive control (MPC) framework. The forward velocity has been included into the objective function, while the actuator saturation has been considered as hard constraints. As shown in the simulation results, the OMR can converge to and follow a reference path successfully and safely. The forward velocity of the robot was close to the desired one and the desired orientation angle was achieved at a given point on the path, while the actuator constraints were not violated. Furthermore, to show the effectiveness of our proposed framework, a comparison with conventional approaches used to bound actuator constraints has been conducted. Mean squared error (MSE), integral squared error (ISE), and traveling distance were used as performance indices. As seen in the results, the proposed control strategy outperforms the conventional approaches. The proportion between translational and rotational velocities was optimized, although the limitation of the rotational and translational velocities was coupled via the OMR’s orientation angle.


Keywords    Path Following Control, Robot Motion, Model Predictive Control, Omnidirectional Mobile Robots, Actuator Constraints


چکیده    در این مقاله، مسیر کنترل کننده یک ربات همراه چندوجهی (OMR) به گونه ای توسعه داده شده است که سرعت رو به جلو بهینه و محدودیت های سرعت محرک در نظر گرفته شده است. هر دو از طریق چارچوب کنترل پیش بینی مدل پیشنهادی (MPC) به دست آمده است. سرعت رو به جلو درتابع هدف گنجانده شده است، در حالی که اشباع محرک به عنوان محدودیت های سخت در نظر گرفته می شود. همانطور که در نتایج شبیه سازی نشان داده شده است،OMR می تواند به یک مسیر مرجع به طور موفقیت آمیز و امن همگرایی و پیروی کند. سرعت رو به جلو ربات به یک شخص مورد نظر نزدیک و زاویه گرایش مورد نظر در یک نقطه داده شده در مسیر به دست آمد، در حالی که محدودیت های محرک نقض نمی شود. علاوه بر این، برای نشان دادن اثربخشی چارچوب پیشنهادی ما، یک مقایسه با روشهای مرسوم که برای اتصال به محدودیت های محرک استفاده می شود، هدایت شده است. میانگین مربعات خطا (MSE)، خطای مربع جدایی ناپذیر (ISE)، و مسافت سفر به عنوان شاخص عملکرد استفاده شد. همانطور که در نتایج دیده می شود، استراتژی کنترل پیشنهاد بهتر از روشهای مرسوم عمل می کند. نسبت بین ترجمه و سرعت چرخشی بهینه سازی شد اگر چه محدودیت سرعت چرخشی و ترجمه ای از طریق زاویه گرایش OMR کوپل شده است.



1.     Campion, G., Bastin, G. and D’Andrea-Novel, B., "Structural properties and classification of kinematic and dynamic models of wheeled mobile robots", IEEE Transactions on Robotics and Automation, Vol. 12, No. 1, (1996), 47-62.

2.     Korayem, M.H., Peydaie, P. and Azimirad, V., "Investigation on the effect of different parameters in wheeled mobile robot error", International Journal of Engineering-Transactions A: Basics, Vol. 20, No. 2, (2007), 195-210.

3.     Korayem, M.H. and Bani Rostam, T., "Experimental analysis for measuring errors in wheeled mobile robots", International Journal of Engineering-Transactions A: Basics, Vol. 18, No. 2, (2005), 115-133.

4.     Soetanto, D., Lapierre, L. and Pascoal, A., "Adaptive, non-singular path-following control of dynamic wheeled robots", in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, IEEE. Vol. 2, (2003), 1765-1770.

5.     Aguiar, A.P., Dacic, D.B., Hespanha, J.P. and Kokotovic P., "Path-following or reference-tracking? An answer relaxing the limits to performance", in IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, (2004).

6.     Micaelli, A. and Samson, C., "Trajectory tracking for unicycle-type and two-steering-wheels mobile robots", (1993).

7.     Płaskonka, J., "Different kinematic path following controllers for a wheeled mobile robot of (2, 0) type", Journal of Intelligent & Robotic Systems, (2013), 1-18.

8.     Altafini, C., "Following a path of varying curvature as an output regulation problem", (2002).

9.     Conceicao, A.S., Oliveira, H.P., Sousa e Silva, A., Oliveira, D. and Moreira, A.P., "A nonlinear model predictive control of an omni-directional mobile robot", in IEEE International Symposium on Industrial Electronics, (2007), 2161-2166.

10.   Petrov, P. and Dimitrov, L., "Nonlinear path control for a differential-drive mobile robot", Recent Journal,  Vol. 11, No. 1, (2010), 41-45.

11.   Pishkenari, H.N., Mahboobi, S.H. and Alasty, A., "Trajectory tracking of a mobile robot using fuzzy logic tuned by genetic algorithm", International Journal of Engineering-Transactions A: Basics,  Vol. 19, No. 1, (2006), 95-104.

12.   Aicardi, M., Casalino, G., Bicchi, A. and Balestrino, A., "Closed loop steering of unicycle like vehicles via lyapunov techniques", Robotics & Automation Magazine, IEEE,  Vol. 2, No. 1, (1995), 27-35.

13.   Faulwasser, T., Kern, B. and Findeisen, R., "Model predictive path-following for constrained nonlinear systems", in Decision and Control, held jointly with 28th Chinese Control Conference. CDC/CCC. Proceedings of the 48th IEEE Conference on, IEEE, (2009), 8642-8647.

14.   Kanjanawanishkul, K. and Zell, A., "Path following for an omnidirectional mobile robot based on model predictive control", in Robotics and Automation,. ICRA'09. IEEE International Conference on, IEEE, (2009), 3341-3346.

15.   Oftadeh, R., Ghabcheloo, R. and Mattila, J., "A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels", in Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, IEEE, (2013), 4845-4851.

16.   Yu, S., Li, X., Chen, H. and Allgöwer, F., "Nonlinear model predictive control for path following problems", International Journal of Robust and Nonlinear Control, (2013).

17.   Vazquez, J. and Velasco-Villa, M., "Path-tracking dynamic model based control of an omnidirectional mobile robot", in 17th IFAC World Congress, (2008).

18.   Huang, H.-C. and Tsai, C.-C., "Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates", Journal of Intelligent and Robotic Systems,  Vol. 51, No. 4, (2008), 439-460.

19.   Kalmar-Nagy, T., D’Andrea, R. and Ganguly, P., "Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle", Robotics and Autonomous Systems,  Vol. 46, No. 1, (2004), 47-64.

20.   Allgower, F., Findeisen, R. and Nagy, Z.K., "Nonlinear model predictive control: From theory to application", Journal of the Chinese Institute of Chemical Engineers,  Vol. 35, No. 3, (2004), 299-315.

21.   Mayne, D.Q., Rawlings, J.B., Rao, C.V. and Scokaert, P.O., "Constrained model predictive control: Stability and optimality", Automatica,  Vol. 36, No. 6, (2000), 789-814.

22.   Indiveri, G., "Swedish wheeled omnidirectional mobile robots: Kinematics analysis and control", IEEE transactions on robotics,  Vol. 25, No. 1, (2009), 164-171.

23.   Heinemann, P., "Cooperative multi-robot soccer in a highly dynamic environment, Citeseer,  (2007).

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir