Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 529-536   

PDF URL: http://www.ije.ir/Vol28/No4/A/6-1922.pdf  
downloaded Downloaded: 210   viewed Viewed: 2009

  EAGLE STRATEGY BASED MAXIMUM POWER POINT TRACKER FOR FUEL CELL SYSTEM
 
M. Sarvi, M. Parpaei, I. Soltani and M. A. Taghikhani
 
( Received: August 07, 2013 – Accepted: March 13, 2015 )
 
 

Abstract    A bunch of factors including the limited fossil resources and rising of fossil fuel price have been causes moving to create the new structure that is based on providing energy security, and protect the environment. One of the alternatives is the fuel cell (FC). Maximum power point tracker has an important role to increase the efficiency of the FC systems. One of the difficulties in maximum power point tracking methods is rapid changes in operating conditions which affects the maximum power point (MPP) of FC. The main contribution of this paper is presentation of a robust and reliable maximum power point tracking (MPPT) method for tracking of MPP of FC under fast variation of operating conditions. The proposed method is based on eagle strategy. In order to verify the accuracy of the proposed method, simulations are performed in MATLAB/SIMULINK. The proposed method is compared with perturb and observe (P&O) and fuzzy MPPT methods. The results show that eagle strategy based MPPT approach can track the MPP of fuel cell better than P&O and fuzzy MPPT. The main features of the proposed approach are high speed for duty cycle determining and high accuracy in MPP tracking of FC in the any contingency.

 

Keywords    Maximum power point tracking, Fuel cell, Eagle strategy, Differential evolution.

 

چکیده    دسته‌ای از عوامل از جمله منابع فسیلی محدود و افزایش قیمت سوخت فسیلی حرکتی را به سمت ایجاد ساختار جدید در جهت تامین امنیت انرژی و حفاظت از محیط زیست ایجاد کرده است. یکی از راه ها پیل سوختی (FC) است. ردیاب نقطه توان ماکزیمم نقش مهمی در افزایش بهره وری از سیستم FC دارد. یکی از مشکلات در روش ردیابی نقطه توان ماکزیمم تغییرات سریع در شرایط عملیاتی است که روی نقطه توان ماکزیمم (MPP) سیستم FC تاثیر گذار است. سهم اصلی این مقاله ارائه یک روش ردیابی نقطه توان ماکزیمم (MPPT) قوی و قابل اعتماد برای ردیابی MPP در FC تحت تغییر سریع شرایط عملیاتی است. روش ارائه شده بر روی استراتژی عقاب استوار است. به منظور بررسی دقت روش ارائه شده، شبیه سازی در MATLAB / SIMULINK انجام شده است. روش ارائه شده با روشهای(P & O) وMPPT فازی مقایسه گردید .نتایج نشان می دهد که رویکرد MPPT بر اساس استراتژی عقاب می تواند MPP سلول سوختی را بهتر از P & O و MPPT ردیابی کند. مهمترین ویژگی های رویکرد ارائه شده سرعت بالا برای تعیین چرخه و دقت بالا در ردیابی MPP در FC در هر حالت احتمالی است.

References   

1.        Kouhi, S., Ranjbar, M.R., Mohammadian, M., and Khavaninzadeh, M., “Economic Aspect of Fuel Cell Power as Distributed Generation”, International Journal of Engineering Transactions A: Basics, Vol. 27, No. 1 (2014), 57-62.

2.        Sedighizadeh, M., Farhangian Kashani, M., “A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell”, International Journal of Engineering, Transactions A: Basics, Vol. 28, No.1, (2015), 16-24

3.        3. Roshandel, R. and Farhanieh, B, “Numerical Simulation of Non-uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance”, International Journal of Engineering, Transactions B: Applications , Vol. 20, No. 2 (2007), 179-192.

4.        Andujar, J.M. and Segura, F., “Fuel cells: History and updating a walk along two centuries”, Renewable and Sustainable Energy Reviews, Vol. 13, (2009), 2309–2322.

5.        Zhang, X., Guo, J., and Chen, J., “The Parametric Optimum Analysis of a Proton Exchange Membrane (PEM) Fuel Cell and Its Load Matching”, Energy, Vol. 35, (2010), 5294-5299

6.        Anne-Claire D., “Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques”, Progress in Materials Science, Vol. 56, (2011), 289–327.

7.        Anthony, D.S., john, B., and Jae, W. P., “Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations”, Hydrogen Energy, Vol. 38, (2013), 5807-5812.

8.        Algazar, M., AL-monier, H., and Abd El-halim, H., “Maximum Power point tracking using fuzzy logic controller”, Electrical Power and Energy System, Vol. 39, (2012), 21-28.

9.        Femia, N., Petrone, G., Spagnuolo, G., and Viteli, M., “Optimization of Perturb and Observe Maximum Power Point Tracking Method”, IEEE Transaction on Power Electronics, Vol. 20, (2005), 963-973.

10.     Zhi-dan Z., Hai-bo, H., Jian, Z.X., Yi, C.G., and Yuan, R., “Adaptive maximum power point tracking control of fuel cell power plants”, Journal of Power Sources, Vol. 176, (2008), 259–269.

11.     Sarvi, M. and Barati, M.M., “Voltage and Current Based MPPT of Fuel Cells under Variable Temperature Conditions”, International UPEC, 31st Aug. – 3rd Sep., Cardiff, Wales, UK, (2010)  1-4.

12.     Das, P. K., li, X., and liu, Z., “Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells”, Hydrogen Energy, Vol. 35, (2010), 2403-2416.

13.     Corrêa, J. M., Farret, FA., Canha, L. N. and Simões, M. G.,  “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach”, IEEE Transactions on Industrial Electronics, Vol. 51, (2004), 1103-1112.

14.     Corrêa, J. M., Farret, FA., Gomes, J. R., and Simões, M. G., “Simulation of Fuel-Cell Stacks Using a Computer- Controlled Power Rectifier With the Purposes of Actual High- Power Injection Applications”, IEEE Transactios on Industrial Applications, Vol. 39, (2003), 1136-1142.

15.     Sarvi, M., Parpaei, M., Bagheri, H., Alkaei kojoori, M.R., “Optimal Operation and Output Oscillations Reduction of PEMFC by using an Intelligent Strategy”, International Journal of Electrochemical Science, Vol. 9, (2014), 4172 - 4189.

16.     Mammar, K. and Chaker, A., “Fuzzy logic control of fuel cell system for residential power generation”, Journal of Electrical Engineering, Vol. 60, (2009), 328-334.

17.     Gandomi, A.H., Yang, X.S., Talatahari, S. and Debd, S., “Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization”, Computers and Mathematics with Applications, Vol. 63, (2012), 191–200.

18.     Storn, R. and Price, K.V., “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”, Journal of Global Optimization, Vol. 11, (1997), 341–359.    


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir