Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 516-522   

PDF URL: http://www.ije.ir/Vol28/No4/A/4-1920.pdf  
downloaded Downloaded: 175   viewed Viewed: 2388

  VIBRATION OF TRAIN-RAIL-BRIDGE INTERACTION CONSIDERING RAIL IRREGULARITY WITH ARBITRARY WAVELENGTH
 
H. Y. Yang, Z. J. Chen and H. L. Zhang
 
( Received: December 27, 2013 – Accepted: March 13, 2015 )
 
 

Abstract    A generation method for the rail random irregularity with arbitrary wavelength interval (WI) is developed, and its accuracy and efficiency are demonstrated. Then a moving wheel-rail-bridge interaction element is derived to establish the finite element equations of motion for the train-rail-bridge interaction system, and the flow chart of assembly and calculation for the system equations is given. According to the sub-interval principle, the influences of the irregularities with the large WI and the sub-intervals on the dynamic responses are analyzed by a numerical example, and the sensitive WI of each response is discussed. The results indicate that the bridge acceleration and the contact force are both more sensitive to the irregularity with WI (1~5 m). The irregularity with WI (0.1~1 m) has less influence on the car body acceleration but mainly contributes to the rail acceleration. However, all the irregularities with wavelengths in interval (1~150 m) can have significant influences on the car body acceleration. Meanwhile, the transient jump of wheel can be simulated and should be taken into account for the derailment risk assessment.

 

Keywords    train-rail-bridge interaction, rail random irregularity, wavelength interval, sensitive wavelength, dynamic response, high-speed railway bridge

 

چکیده    در این تحقیق، روش تولیدی برای بی نظمی تصادفی راه آهن با فاصله طول موج دلخواه (WI) توسعه یافته است، و دقت و بهره وری آن نشان داده شده است. سپس المان متحرکی از برهمکنش چرخ-راه آهن-پل حاصل گردید تا معادلات المان محدود حرکت برای سیستم تعاملی قطار-راه آهن-پل ایجاد کند، و فلوچارت مونتاژ و محاسبه برای معادلات سیستم داده می شود. با توجه به اصل زیر فاصله، اثرات بی نظمی با WI بزرگ و زیر فواصل روی پاسخهای دینامیک با یک مثال عددی تجزیه و تحلیل می شود و WI حساس هر پاسخ مورد بحث قرار می گیرد. نتایج نشان می دهد که شتاب پل و نیروی تماس هر دو حساسیت بیشتری نسبت به بی نظمی با WI (5 ~ 1 متر) دارند. بی نظمی با WI (1 ~ /01 متر) تاثیر کمتری روی شتاب بدنه خودرو دارد اما به طور عمده منجر به شتاب راه آهن می شود. با این حال، همه بی نظمیها با طول موج در فاصله (150 ~ 1 متر) می تواند تاثیر قابل توجهی روی شتاب بدنه خودرو داشته باشد. در همین حال، پرش گذرا از چرخ می تواند شبیه سازی شود و باید برای ارزیابی ریسک از خط خارج شدن ترن در نظر گرفته شود.

References   

1.        Bian, J., Gu, Y. and Murray, M.H., “A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis”, Vehicle System Dynamics, Vol. 51, (2013), 784-797.

2.        Alamatian, J., “A modified multi time step integration for dunamic analysis”, International Journal of Engineering, Transaction B: Applications, Vol. 24, (2008), 148-153.

3.        Choi, I.Y., Um, J.H., Lee, J.S. and Choi, H.H., “The influence of track irregularities on the running behavior of high-speed trains”, Journal of Rail and Rapid Transit, Vol. 227, (2013), 94-102.

4.        Zhai, W.M., Wang, K.Y. and Cai, C.B., “Fundamentals of vehicle-track coupled dynamics”, Vehicle System Dynamics, Vol. 47, (2009), 1349-1376.

5.        Guo, W.W., Xia, H., Roeck, G.D. and Liu, K., “Integral model for train-track-bridge interaction on the Sesia viaduct: Dynamic simulation and critical assessment”, Computers and Structures, Vol. 112-113, (2012), 205-216.

6.        Liu, Y.H., Li, F. and Huang, Y.H., “Numerical simulation methods of railway track irregularities”, Journal of Traffic and Transportation Engineering, Vol. 6, (2006), 29-33. (in Chinese)

7.        Zhang, Y.L. and Zhang, J.F., “Numerical simulation of stochastic road process using white noise filtration”, Mechanical Systems and Signal Processing, Vol. 20, (2006), 363-372.

8.        Zhang, Q.L., Vrouwenvelder, A. and Wardenier, J., “Numerical simulation of train-bridge interactive dynamics”, Computers and Structures, Vol. 79, (2001), 1059-1075.

9.        Chen, G. and Zhai, W.M., “Numerical simulation of the stochastic process of railway track irregularities”, Journal of Southwest Jiaotong University, Vol. 34, (1999), 138-142. (in Chinese)

10.     Shahmardani, M., Mirzapour, J. and Tariverdilo, S., “Dynamic response of submerged vertical cylinder with lumped mass under seismic excitation”, International Journal of Engineering, Transaction A: Basics, Vol. 27, No. 10, (2014), 1547-1556.

11.     Yang, H.Y., Chen, Z.J., Zhang, H.L. and Fan, J.P., “Dynamic analysis of train-rail-bridge interaction considering concrete creep of a multi-span simply supported bridge”, Advances in Structural Engineering, Vol. 17, (2014), 709-720.

12.     Yang, H.Y., Chen, Z.J. and Zhang, H.L., “Vertical vibration of non-uniform continuous bridge travelled by vehicle considering elasticity contact”, Highway, Vol. 10, (2013), 97-102. (in Chinese)

13.     Nguyen, D.V., Kim, K.D. and Warnitchai, P., “Dynamic analysis of three-dimensional bridge-high-speed train interactions using a wheel-rail contact model”, Engineering Structures, Vol. 31, (2009), 3090-3106.

14.     ERRI D214 Committee, “Rail bridges for speeds higher than 200 km/h”, Research report of the European Rail Research Institute, Utrecht, (1999).

15.     Shooshtari, A. and Razavi, S., “Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates”, International Journal of Engineering, Transaction A: Basics, Vol. 28, No. 1, (2015), 136-144.         


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir