IJE TRANSACTIONS A: Basics Vol. 28, No. 4 (April 2015) 499-506   

PDF URL: http://www.ije.ir/Vol28/No4/A/2-1918.pdf  
downloaded Downloaded: 365   viewed Viewed: 2805

F. Akhlaghian and S. Sohrabi
( Received: November 06, 2014 – Accepted: March 13, 2015 )

Abstract    In this work, Fe/TiO2 nanostructured catalyst was prepared using sol-gel method developed by Yoldas and tested in degradation of phenol in water under UV radiation. The synthesized catalyst was characterized by XRF, XRD, specific surface area and porosimetry, and SEM methods. The porosimetry revealed the mesopore structure of the catalyst. Results of SEM confirmed the nano dispersion of iron oxides on titania support. Effects of Fe load of the catalyst, dosage of the catalyst, pH, H2O2 amount, and time were investigated. Results of phenol photodegradation over Fe/TiO2 showed that the reaction followed an apparent first order kinetics at low phenol concentration and the apparent rate constant was 0.0017 min-1. Also, there was an optimum for Fe load of the catalyst.


Keywords    Nanostructured, Fe, Photocatalysis, Titania, Phenol degradation, Sol-Gel


چکیده    در این کار کاتالیست نانو ساختار آهن بر روی تیتانیا با استفاده از روش سل-ژل ابداع شده بوسیله یولداس ساخته شد و در تجزیه فنل در آب تحت تابش اشعه ماوراء بنفش آزمایش شد. کاتالیست سنتز شده بوسیله روش های ایکس ار اف، ایکس ار دی، مساحت سطح ویژه و تخلخل سنجی، و میکروسکپی روبش الکترونی تعیین مشخصات شد. تخلخل سنجی ساختار مزوپور کاتالیست را نشان داد. نتایج میکروسکپی روبش الکترونی پراکندگی نانوذرات اکسیدآهن را بر روی پایه تیتانیا تایید کردند. اثرات بارآهن کاتالیست، مقدار کاتالیست، پی اچ، مقدار پراکسید هیدروژن و زمان بررسی شدند. نتایج تجزیه فتو شیمیائی فنل بر روی کاتالیست آهن بر روی تیتانیا نشان داد که واکنش از سینتیک مرتبه اول پیروی می کند. ثابت سرعت ظاهری براب 0.0017 بر دقیقه بود. همچنین مقدار بهینه ای برای بار آهن کاتالیست وجود دارد.خ


1.        Kebria, M. and Jahanshahi M., "Nanofiltration membrane synthesized from polyethleneimine for removal of MgSO4 from aqueous solution", International Journal of Engineering, Vol. 27, No. 8, (2014), 1173-1178.

2.        Busca, G., Berardinelli, S., Resini, C. and Arrighi, L., " Technologies for the removal of phenol from fluid streams: A short review of recent developments", Journal of Hazardous Materials, Vol. 160, No. 2-3, (2008), 265-288. .

3.        Masomi, M., Ghoreyshi, A. A., Najafpour G.D. and  Mohamed, A.R.B., "Adsorption of phenolic compounds onto activated carbon synthesized from pulp and paper mill sludge: equilibrium isotherm, thermodynamics, and mehanism studies", International Journal of Engineering, Vol. 27, No. 10,  (2014), 1485-1494..

4.        Zareie, C. , Najafpour, G. and Sharifzadeh baei, M.,  "Preparation of nanochitosan as an effective sorbent for the removal of copper ions from aqueous solutions", International Journal of Engineering, Vol. 26, No. 8, (2013), 829-836.   

5.        Cam, L.M., Khu, L.V. and Ha, N.N., "Theoretical study on the adsorption of phenol on activated carbon using density functional theory", Journal of Molecular Modeling, Vol. 19, (2013), 4395-4402.

6.        http://water.epa.gov/scitech/swguidance/standards/criteria/health/phenol_index.cfm (2014)

7.        Poulopoulos, S.G., Arvanitaks, F. and Philippopoulos, C.J.,  "Photochemical treatment of phenol aqueous solutions using ultraviolet radiation and hydrogen peroxide", Journal of Hazardous Materials, Vol. 129, No. 1-3, (2006), 64-68.

8.        Lee, S.-Y. and  Park, S.-J., "TiO2 photocatalyst for water treatment applications", Journal of Industrial Engineering Chemistry, Vol. 19, No. 6, (2013), 1761-1769.

9.        Mathews, R.W., "Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation", Pure and Applied Chemistry, Vol. 4, No. 9, (1992), 1285-1290.

10.     Ahmed, S., Rasul, M.G., Martens, W.N., Brown R. and   Hashib, M.A., " Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments", Desalination, Vol. 261, No. 1-2, (2010) 3-18.

11.     Sun, L., Li, J., Wang, C.L., Li, S.F., Chen H.B. and Lin C.J., " An electrochemical strategy of doping Fe3+ into TiO2 nanotubes array films for enhancement in photocatalytic activity", Solar Energy Materials and Solar Cells, Vol. 93, No. 10, (2009), 1875-1880.

12.     Lorret, O., Francovā, D., Waldner, G. and Stelzer, N., "W-doped totania nanoparticles for UV and visible-light  photocatalytic reactions", Applied Catalysis B:  Environmental, Vol. 91, No. 1-2, (2009), 39-46.    

13.     Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu and  H., Ko, T.-H., "Study on photocatalytic degradation of gaseous dichloromethane using pure and iron-doped TiO2 prepared by the sol-gel method", Chemosphere, Vol. 66, No. 11, (2007), 2142-2151.

14.     Adan C., Carbajo, J., Bahamonde, A. and  Martinez-Arias, A., "Phenol photodegradation with oxygen and hydrogen peroxide over TiO2 and Fe-doped TiO2", Catalysis Today, Vol. 143, No. 3-4, (2009), 247-252.

15.     Shawabkeh, R.A., Khashman, O.A. and Bisharat, G.I., "Photocatalytic degradation of phenol using Fe-TiO2 by different illumination sources", International Journal of Chemisty, Vol. 2, No.2, (2010), 10-18.

16.     Khraisheh, M., Wu, L., Al-Muhtaseb, H.A., Albadarin, A.B. and Walker, G.M., "Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts", Chemical Engineering Journal, Vol. 213, (2012), 125-134.    

17.     Palanisamy, B., Babu, C., Sundaravel, B., Anandan, S. and Murugean, V., "Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol", Journal of Hazardous Materials, Vol. 252-253, (2013), 233-242.

18.     Crişan, M. , Răileanu, M., Drăran, N., Crişan, D.,  Ianculescu, A., Niţol, I., Oanccea, P., Şomăcescu, S, Stănică, N., Vasile, B. and Stan, C. "Sol-gel iron-doped TiO2 nanopowders with photocatalytic activity", Applied Catalysis A: General, in press (2015).

19.     Oros-Ruiz, S., Zanella, R. and  Prado B., " Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25", Journal of Hazardous Materials, Vol. 263, No. 1, (2013), 28-35.

20.     Akpan, U.G. and Hameed, B.H., "The advancements in sol-gel method of doped-TiO2 photocatalysts", Applied Catalysis A: General, Vol. 375, No. 1, (2010), 1-11.

21.     Brinker, C.J. and  Scherer, G.W., "Sol Gel Science", New York, Academic Press, (1990).

22.     Nezamzadeh-Ejhieh, A. and  Salimi, Z., "Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite", Applied Catalysis A: General, Vol. 390, No. 1-2, (2010), 110-118.

23.     McEvoy, J.G., Cui, W. and  Zhang, Z., "Dgradative and disinfective properties of carbon-doped anatase-rutile TiO2 mixtures under visible light irradiation", Catalysis Today, Vol. 207, (2013), 191-199.

24.     Nahar, M.S., Zhang, J., Hasegawa, K., Kagaya, S. and Kuroda, S., "Phase transformation of anatase-rutile crystals in doped and undoped particles obtained by the oxidation of polycrystalline sulfide", Materials Science in Semiconductor Processing, Vol. 12, No. 4-5, (2009), 168-174.

25.     Black, D.B. and Lovering, E.G., "Estimation of the degree of crystallinity in digoxin by X-ray and infrared methods", Journal of Pharmacy and Pharamcology, Vol. 29, No. 11, (1977), 684-687.

26.     Leofanti, G., Padovan, M., Tozzola, G. and Venturelli, B., " Surface area and pore texture of catalysts", Catalysis Today, Vol. 41, No. 1-3, (1998), 207-219.

27.     Shanker, M.V., Anandan, S., Venkatachalam, N., Arabindoo,  B. and Murugesan, V., " Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solution", Journal of Chemical Technology and Biotechnology, Vol. 79, No. 11, (2004), 1279-1285.

28.     Poretedal, H.R., Norozi, A., Keshavarz, M.H., and Semnani, A., "Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes", Journal of Hazardous Materials, Vol. 162, No. 2-3, (2009), 674-681.

29.     Liu, X., Tang, Y., Luo, S., Wang, Y., Zhang, X., Chen, Y., and Liu, C., " Reduced graphene oxides and CuInS2 codecorated TiO2 nanotubes arrays for efficient removal of herbicide 2,4-dichloropheoxyacetic acid from water", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 262, (2013), 22-27.  

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir