Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 26, No. 1 (January 2013) 33-38   

PDF URL: http://www.ije.ir/Vol26/No1/A/5-1348.pdf  
downloaded Downloaded: 114   viewed Viewed: 1646

  INVESTIGATION OF PHASE EVOLUTION OF TIC-TIB2 NANOSTRUCTURE FABRICATED BY MASHS (RESEARCH NOTE)
 
B. Aminikia, S. A. Tayebifard and A. A. Youzbashi
 
( Received: May 03, 2011 – Accepted: November 15, 2012 )
 
 

Abstract    Nanocomposite of titanium diboride/titanium carbide was fabricated by combustion synthesis of mechanically milled reactant powders. The stoichiometric mixture of Ti and B4C as starting materials milled for 1, 3, 6 and 9 h. Milled powders pressed to form pellets then green compacts were placed in a tube furnace that preheated to 1100 oC in inert atmosphere (Ar).The samples were investigated by XRD and SEM analysis after different milling times and synthesis process. TiC and TiB2 were not formed during milling process. But analysis of synthesized samples showed TiC was the first formed phase and followed by TiB2, whereas other phases were not detected in the samples that pre- milled for 6 and 9 h. The increasing of milling time helped significantly to improve distribution of TiB2 in products. The crystallite size of TiB2 and TiC in the composite based on milled powder for 9 h calculated 46.2 nm and 34.6 nm respectively.

 

Keywords    TiC; TiB2; Nanocomposites; SHS; B4C; TE; Mechanically-Activated

 

چکیده   

در تحقيق حاضر، نانوساختار تيتانيوم دي بورآيد - كاربيد تيتانيوم از طريق سنتز احتراقي پودرهاي واكنشي كه آسياب مكانيكي شده بودند، توليد شد. مخلوط استوكيومتريك شاملِ Ti و B4C به عنوان مواد واكنشي به مدت 1، 3، 6 و 9 ساعت، آسياب شد. مخلوطهاي پودري آسياب شده به شكل قرصهايي پرس شده و سپس درون يك كورة تيوبي با اتمسفر داخلي آرگون كه تا دماي oC 1100 پيش گرم شده بود قرار گرفتند. از نمونهها بعد از زمانهاي مختلف عمليات آسياب و پس از فرآيند سنتز احتراقي، از طريق آنالیز XRD و SEM مورد مطالعه قرار گرفته شد. اين بررسيها نشان داد كه فازهاي TiC و TiB2 در طول فرآيند آسياب، تشكيل نشدهاند. آناليز نمونههاي سنتزي نشان داد كه در ابتدا فاز TiC در نمونهها تشكيل ميشود و در ادامة آن فاز TiB2 به وجود ميآيد. در عين حال در نمونههايي كه به مدت 6 و 9 ساعت، پيش آسياب شده بودند، هيچگونه اثري از فازهايي غير از TiCو TiB2 مشاهده نشد. نتايج همچنين نشان داد كه افزايش زمان آسياب در توزيع بهينة فاز TiB2 در محصول نهايي، تأثير قابل ملاحظهاي دارد. اندازة بلورك فازهاي TiC و TiB2 در كامپوزيتي كه از سنتز احتراقيِ مخلوطي با 9 ساعت عمليات آسياب شكل گرفته بود، به ترتيب 34.6 و 46.2 نانومتر محاسبه شد.

References    [1] D. Vallauri , I.C. At´ıas Adri´an, A. Chrysanthou, TiC–TiB2 composites: A review of phase relationships,processing and properties, J. Eur. Ceram. Soc. 28 (2008) 1697–1713.[2] C.L. Yeh, Y.L. Chen, Combustion synthesis of TiC–TiB2 composites, J. Alloys Compd. 463 (2008)  373–377.[3] E.Y. Gutmanas, I. Gotman, J. Eur. Ceram. Soc. 19 (1999) 2381–2393.[4] J.C. Han, G.Q. Chen, S.Y. Du, J.V. Wood, J. Eur. Ceram. Soc. 20 (2000)927–932.[5] X. Zhang, Y. Zheng, J. Han, Key Eng. Mater. 336–338 (2007) 1084–1086.[6] Udwadia, K. K. and Puszynski, J. A., In In Situ Reactions for Synthesis of Composites, Ceramics and Intermetallics, ed. E. V. Barrera et al. TMS, Warrendale, PA, (1995). p. 59.[7] T.J. Davies, A.A. Ogwu, Powder Metall. 38 (1) (1995) 39–44.[8] H. Zhao, Y.-B. Cheng, Ceram. Int. 25 (1999) 353–358.[9] G. Wen, S.B. Li, B.S. Zhang, Z.X. Guo, Acta Mater. 49 (2001) 1463–1470.[10]  S.K. Lee, D. Kim, C.K. Kim, J. Mater. Sci. 29 (1994) 4125–4130.[11] I. Gotman, N. A Travitzky and E. Y Gutmanas, Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites: reactive synthesis and properties. Mater. Sci. Eng. A, 244 (1998) 127–137.[12] A. M Locci, R.orr`u, G. Cao and Z. A Munir, Simultaneous spark plasma synthesis and densification of TiC–TiB2 composites. J. Am. Ceram. Soc., 89 (2006) 848–855.[13] X. H Zhang, C. C. Zhu, W. Qu, X. D. Zhang, and V. L. Kvanin, Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic–matrix composites. Comp. Sci. Technol., 62 (2002) 2037–2041.[14] I. Song, L. Wang, M. Wixom and L. T. Thompson, Self-propagating high temperature synthesis and dynamic compaction of titanium diboride/titanium carbide composites. J. Mater. Sci., 35 (2000) 2611–2617.[15] Z.A. Munir, U. Anselmi-Tamburini, Mater. Sci. Rep. 3 (1989) 277–365.[16] A.G. Merzhanov, Combust. Sci. Technol. 98 (1994) 307–336.[17] A. Varma, J.P. Lebrat, Chem. Eng. Sci. 47 (1992) 2179–2194.[18] J.J. Moore, H.J. Feng, Prog. Mater. Sci. 39 (1995) 243–273.[19] C.L. Yeh, G.S. Teng, J. Alloys Compd. 424 (2006) 152–158.[20] X. Zhang, C. Zhu,W. Qu, X. He, V.L. Kvanin, Composit. Sci. Technol. 62 (2002) 2037–2041.[21] K. Kanetake, M. Kobashi, Scripta Mater. 54 (2006) 521–525.[22] P. Shen, B. Zou, S. Jin, Q. Jiang, Mater. Sci. Eng. A 454–455 (2007) 300–309.[23] Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao, Q.C. Jiang, J. Mater. Res. 22 (2007) 169–174.[24] K.A. Philpot, Z.A. Munir, J.B. Holt, J. Mater. Sci. 22 (1987) 159–169.[25] L. Klinger, I. Gotman, D. Horvitz, In situ processing of TiB2:TiC ceramic composites by thermal explosion under pressure: experimental study and modeling, Mater. Sci. Eng. A 302 (2001) 92–99.[26] K. Kanetake, M. Kobashi, Scripta Mater. 54 (2006) 521–525.[27] C. Suryanarayana, Prog. Mater Sci. 46 (2001) 1–184.[28] F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, Mater. Sci. Eng. A262 (1999) 279–288.[29] V. Gauthier, C. Josse, F. Bernard, E. Gaffet, J.P. Larpin, Mater. Sci. Eng. A265 (1999) 117–128.[30] J.W. Lee, Z.A. Munir, M. Ohyanagi, Mater. Sci. Eng. A325 (2002) 221–227.[31] Yinjiao L, Yinchang C. Notebook of thermodynamic data of inorganic. Shengyang: East-north University Press; (1996).[32] J. B. Holt, Z. A. Munir, Combustion synthesis of titanium carbide: theory and experiment, J. Mater. Sci. 21 (1986) 251-259.[33] A.G. Merzhanov, Combust. Sci. Technol 10 (1975) 195.[34] Z. X. Chuncheng, Q. W. Xiaodong, V. L. Kvanin, Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic–matrix composites, Comp. Sci. Technol., 62 (2002) 2037–2041[35] M. Shapiro, I. Gotman and V. Dudko, Modeling of Thermal Explosion in Constrained Dies for B4C–Ti and BN–Ti Powder Blends, J. Eur. Ceram. Soc. 19 (1999) 2233–2239[36] F. Olevsky, P. Mogilevsky, E. Y. Gutmanas and I.Gotman, Synthesis of in-situ TiB2/TiN ceramic matrix composites from dense BN–Ti and BN–Ti–Ni powder blends. Metall. Mater. Trans. A 27 (1996) 2071–2079.[37] A. H. Advani, N. N. Thadhani, H. A. Grebe, R. Heaps, C. Coffin, T. Kottke, Dynamic modelling of material and process parameter effects on self-propagating high-temperature synthesis of titanium carbide ceramics, J. Mater. Sci. 27 (1992) 3309–3317.[38] B. D.  Cullity, “Elements of X-Ray Diffraction”, second edit., Addison-WesleyPublishing, 1977.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir